Gas is one of the four fundamental states of matter. The others are solid, liquid, and plasma. A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide). A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles. This separation usually makes a colourless gas invisible to the human observer. The gaseous state of matter occurs between the liquid and plasma states, the latter of which provides the upper temperature boundary for gases. Bounding the lower end of the temperature scale lie degenerative quantum gases which are gaining increasing attention. High-density atomic gases super-cooled to very low temperatures are classified by their statistical behavior as either Bose gases or Fermi gases. For a comprehensive listing of these exotic states of matter see list of states of matter. The only chemical elements that are stable diatomic homonuclear molecular gases at STP are hydrogen (H2), nitrogen (N2), oxygen (O2), and two halogens: fluorine (F2) and chlorine (Cl2). When grouped together with the monatomic noble gases – helium (He), neon (Ne), argon (Ar), krypton (Kr), xenon (Xe), and radon (Rn) – these gases are referred to as "elemental gases". The word gas was first used by the early 17th-century Flemish chemist Jan Baptist van Helmont. He identified carbon dioxide, the first known gas other than air. Van Helmont's word appears to have been simply a phonetic transcription of the Ancient Greek word χάος – the g in Dutch being pronounced like ch in "loch" (voiceless velar fricative, x) – in which case Van Helmont was simply following the established alchemical usage first attested in the works of Paracelsus. According to Paracelsus's terminology, chaos meant something like . An alternative story is that Van Helmont's term was derived from "gahst (or geist), which signifies a ghost or spirit".

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related categories (37)
Statistical mechanics
In physics, statistical mechanics is a mathematical framework that applies statistical methods and probability theory to large assemblies of microscopic entities. It does not assume or postulate any natural laws, but explains the macroscopic behavior of nature from the behavior of such ensembles. Sometimes called statistical physics or statistical thermodynamics, its applications include many problems in the fields of physics, biology, chemistry, and neuroscience.
Phase transitions
In chemistry, thermodynamics, and other related fields, a phase transition (or phase change) is the physical process of transition between one state of a medium and another. Commonly the term is used to refer to changes among the basic states of matter: solid, liquid, and gas, and in rare cases, plasma. A phase of a thermodynamic system and the states of matter have uniform physical properties. During a phase transition of a given medium, certain properties of the medium change as a result of the change of external conditions, such as temperature or pressure.
Chemical concentration
In chemistry, concentration is the abundance of a constituent divided by the total volume of a mixture. Several types of mathematical description can be distinguished: mass concentration, molar concentration, number concentration, and volume concentration. The concentration can refer to any kind of chemical mixture, but most frequently refers to solutes and solvents in solutions. The molar (amount) concentration has variants, such as normal concentration and osmotic concentration. Dilution is reduction of concentration, e.
Show more
Related concepts (39)
Gas
Gas is one of the four fundamental states of matter. The others are solid, liquid, and plasma. A pure gas may be made up of individual atoms (e.g. a noble gas like neon), elemental molecules made from one type of atom (e.g. oxygen), or compound molecules made from a variety of atoms (e.g. carbon dioxide). A gas mixture, such as air, contains a variety of pure gases. What distinguishes a gas from liquids and solids is the vast separation of the individual gas particles.
Temperature
Temperature is a physical quantity that expresses quantitatively the perceptions of hotness and coldness. Temperature is measured with a thermometer. Thermometers are calibrated in various temperature scales that historically have relied on various reference points and thermometric substances for definition. The most common scales are the Celsius scale with the unit symbol °C (formerly called centigrade), the Fahrenheit scale (°F), and the Kelvin scale (K), the latter being used predominantly for scientific purposes.
Internal energy
The internal energy of a thermodynamic system is the energy contained within it, measured as the quantity of energy necessary to bring the system from its standard internal state to its present internal state of interest, accounting for the gains and losses of energy due to changes in its internal state, including such quantities as magnetization. It excludes the kinetic energy of motion of the system as a whole and the potential energy of position of the system as a whole, with respect to its surroundings and external force fields.
Show more
Related courses (24)
ME-251: Thermodynamics and energetics I
The course introduces the basic concepts of thermodynamics and heat transfer, and thermodynamic properties of matter and their calculation. The students will master the concepts of heat, mass, and mom
MSE-101(a): Materials:from chemistry to properties
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
PHYS-105: Advanced physics II (thermodynamics)
Ce cours présente la thermodynamique en tant que théorie permettant une description d'un grand nombre de phénomènes importants en physique, chimie et ingéniere, et d'effets de transport. Une introduc
Show more
Related lectures (185)
Thermo1: Evaluating Properties
Explores evaluating properties of substances, including liquids, solids, ideal gases, and real gases, emphasizing specific heat and enthalpy.
Thermophysical Properties of Fluid Systems
Explores accurate thermophysical properties of fluids, including density, enthalpy, and viscosity, and how to interpret data tables.
Chemistry: Atomic Structure and Thermodynamics
Covers atomic structure, thermodynamics, material properties, and ideal gas law.
Show more
Related publications (135)

Magmatic Intrusions From a Hydraulic Fracture Modeling Perspective

Brice Tanguy Alphonse Lecampion, Andreas Möri

The emplacement of magmatic intrusions in the earth’s crust has been investigated for decades. The driving mechanism is the density difference between the fluid and the rock. In the absence of heterogeneities, this difference creates a constant buoyancy fo ...
2023

Modeling of rough contact interfaces with trapped compressive liquid pockets

Jean-François Molinari, Guillaume Anciaux, Parissasadat Alavi, Julie Richard, Loris Rocchi

Boundary and mixed lubrication are usually used to reduce friction in sheet metal form- ing. In the boundary lubrication regime load is mainly carried by contacting asperities. Therefore, the tribological problem can be solved in the dry case using a geome ...
2023

On the bulk compressibility of close-packed particles and their composites

Andreas Mortensen, Maria Gabriella Tarantino

The hydrostatic compaction of composites comprising a closely-packed particle-bed filled by a dense matrix is measured experimentally using a fluid-pressurization apparatus. A highly compliant polymer or pure aluminium are infiltrated into preforms of pack ...
ELSEVIER SCI LTD2022
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.