Numerical analysis is the study of algorithms that use numerical approximation (as opposed to symbolic manipulations) for the problems of mathematical analysis (as distinguished from discrete mathematics). It is the study of numerical methods that attempt at finding approximate solutions of problems rather than the exact ones. Numerical analysis finds application in all fields of engineering and the physical sciences, and in the 21st century also the life and social sciences, medicine, business and even the arts. Current growth in computing power has enabled the use of more complex numerical analysis, providing detailed and realistic mathematical models in science and engineering. Examples of numerical analysis include: ordinary differential equations as found in celestial mechanics (predicting the motions of planets, stars and galaxies), numerical linear algebra in data analysis, and stochastic differential equations and Markov chains for simulating living cells in medicine and biology.
Before modern computers, numerical methods often relied on hand interpolation formulas, using data from large printed tables. Since the mid 20th century, computers calculate the required functions instead, but many of the same formulas continue to be used in software algorithms.
The numerical point of view goes back to the earliest mathematical writings. A tablet from the Yale Babylonian Collection (YBC 7289), gives a sexagesimal numerical approximation of the square root of 2, the length of the diagonal in a unit square.
Numerical analysis continues this long tradition: rather than giving exact symbolic answers translated into digits and applicable only to real-world measurements, approximate solutions within specified error bounds are used.
The overall goal of the field of numerical analysis is the design and analysis of techniques to give approximate but accurate solutions to hard problems, the variety of which is suggested by the following:
Advanced numerical methods are essential in making numerical weather prediction feasible.
Categories
Official source
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course presents numerical methods for the solution of mathematical problems such as systems of linear and non-linear equations, functions approximation, integration and differentiation, and diffe
Le cours présente des méthodes numériques pour la résolution de problèmes mathématiques comme des systèmes d'équations linéaires ou non linéaires, approximation de fonctions, intégration et dérivation
Active in hydroelectric, simulation and multiphysics. Power Vision Engineering specializes in modelling and simulating hydroelectric power plants' dynamic behavior, offering services in system stability assessment and complex flow analysis.
In mathematics, Rodrigues' formula (formerly called the Ivory–Jacobi formula) is a formula for the Legendre polynomials independently introduced by , and . The name "Rodrigues formula" was introduced by Heine in 1878, after Hermite pointed out in 1865 that Rodrigues was the first to discover it. The term is also used to describe similar formulas for other orthogonal polynomials. describes the history of the Rodrigues formula in detail.
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a vast number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections to different mathematical structures and physical and numerical applications. Closely related to the Legendre polynomials are associated Legendre polynomials, Legendre functions, Legendre functions of the second kind, and associated Legendre functions.
Computational mathematics is an area of mathematics devoted to the interaction between mathematics and computer computation. A large part of computational mathematics consists roughly of using mathematics for allowing and improving computer computation in areas of science and engineering where mathematics are useful. This involves in particular algorithm design, computational complexity, numerical methods and computer algebra. Computational mathematics refers also to the use of computers for mathematics itself.
In computer science, a high-level programming language is a programming language with strong abstraction from the details of the computer. In contrast to low-level programming languages, it may use natural language elements, be easier to use, or may automate (or even hide entirely) significant areas of computing systems (e.g. memory management), making the process of developing a program simpler and more understandable than when using a lower-level language. The amount of abstraction provided defines how "high-level" a programming language is.
Linear algebra is the branch of mathematics concerning linear equations such as: linear maps such as: and their representations in vector spaces and through matrices. Linear algebra is central to almost all areas of mathematics. For instance, linear algebra is fundamental in modern presentations of geometry, including for defining basic objects such as lines, planes and rotations. Also, functional analysis, a branch of mathematical analysis, may be viewed as the application of linear algebra to spaces of functions.
Complex analysis, traditionally known as the theory of functions of a complex variable, is the branch of mathematical analysis that investigates functions of complex numbers. It is helpful in many branches of mathematics, including algebraic geometry, number theory, analytic combinatorics, applied mathematics; as well as in physics, including the branches of hydrodynamics, thermodynamics, quantum mechanics, and twistor theory. By extension, use of complex analysis also has applications in engineering fields such as nuclear, aerospace, mechanical and electrical engineering.
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...
Springer2024
,
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
Mass lumping techniques are commonly employed in explicit time integration schemes for problems in structural dynamics and both avoid solving costly linear systems with the consistent mass matrix and increase the critical time step. In isogeometric analysi ...