In computer networking, Point-to-Point Protocol (PPP) is a data link layer (layer 2) communication protocol between two routers directly without any host or any other networking in between. It can provide loop connection authentication, transmission encryption, and data compression.
PPP is used over many types of physical networks, including serial cable, phone line, trunk line, cellular telephone, specialized radio links, ISDN, and fiber optic links such as SONET. Since IP packets cannot be transmitted over a modem line on their own without some data link protocol that can identify where the transmitted frame starts and where it ends, Internet service providers (ISPs) have used PPP for customer dial-up access to the Internet.
Two derivatives of PPP, Point-to-Point Protocol over Ethernet (PPPoE) and Point-to-Point Protocol over ATM (PPPoA), are used most commonly by ISPs to establish a digital subscriber line (DSL) Internet service LP connection with customers.
PPP is commonly used as a data link layer protocol for connection over synchronous and asynchronous circuits, where it has largely superseded the older Serial Line Internet Protocol (SLIP) and telephone company mandated standards (such as Link Access Protocol, Balanced (LAPB) in the X.25 protocol suite). The only requirement for PPP is that the circuit provided be duplex. PPP was designed to work with numerous network layer protocols, including Internet Protocol (IP), TRILL, Novell's Internetwork Packet Exchange (IPX), NBF, DECnet and AppleTalk. Like SLIP, this is a full Internet connection over telephone lines via modem. It is more reliable than SLIP because it double checks to make sure that Internet packets arrive intact. It resends any damaged packets.
PPP was designed somewhat after the original HDLC specifications. The designers of PPP included many additional features that had been seen only in proprietary data-link protocols up to that time. PPP is specified in RFC 1661.
RFC 2516 describes Point-to-Point Protocol over Ethernet (PPPoE) as a method for transmitting PPP over Ethernet that is sometimes used with DSL.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Network monitoring is the use of a system that constantly monitors a computer network for slow or failing components and that notifies the network administrator (via email, SMS or other alarms) in case of outages or other trouble. Network monitoring is part of network management. While an intrusion detection system monitors a network threats from the outside, a network monitoring system monitors the network for problems caused by overloaded or crashed servers, network connections or other devices.
In computing, Internet Key Exchange (IKE, sometimes IKEv1 or IKEv2, depending on version) is the protocol used to set up a security association (SA) in the IPsec protocol suite. IKE builds upon the Oakley protocol and ISAKMP. IKE uses X.509 certificates for authentication ‒ either pre-shared or distributed using DNS (preferably with DNSSEC) ‒ and a Diffie–Hellman key exchange to set up a shared session secret from which cryptographic keys are derived. In addition, a security policy for every peer which will connect must be manually maintained.
Simple Network Management Protocol (SNMP) is an Internet Standard protocol for collecting and organizing information about managed devices on IP networks and for modifying that information to change device behaviour. Devices that typically support SNMP include cable modems, routers, switches, servers, workstations, printers, and more. SNMP is widely used in network management for network monitoring. SNMP exposes management data in the form of variables on the managed systems organized in a management information base (MIB), which describes the system status and configuration.
Explores challenges in data center networks, introduces physical-layer programmability, innovative topologies, and practical implementations to enhance network reliability and performance.
Explores challenges in new data centers, large internet service growth, power consumption, availability, storage management, software layers, and energy efficiency.
From medical support to education and remote work, our everyday lives increasingly depend on Internet performance. When users experience poor performance, however, the decentralization of the Internet allows limited visibility into which network is respons ...
« Impresso – Media Monitoring of the Past » est un projet de recherche interdisciplinaire dans lequel une équipe d’historiens, de linguistes informaticiens et de designers collabore à la mise en données d’un corpus d’archives de presse numérisées. Les prin ...
2021
The Internet protocol suite, commonly known as TCP/IP, is a framework for organizing the set of communication protocols used in the Internet and similar computer networks according to functional criteria. The foundational protocols in the suite are the Transmission Control Protocol (TCP), the User Datagram Protocol (UDP), and the Internet Protocol (IP). Early versions of this networking model were known as the Department of Defense (DoD) model because the research and development were funded by the United States Department of Defense through DARPA.
A computer network is a set of computers sharing resources located on or provided by network nodes. Computers use common communication protocols over digital interconnections to communicate with each other. These interconnections are made up of telecommunication network technologies based on physically wired, optical, and wireless radio-frequency methods that may be arranged in a variety of network topologies. The nodes of a computer network can include personal computers, servers, networking hardware, or other specialized or general-purpose hosts.
Computer security, cyber security, digital security or information technology security (IT security) is the protection of computer systems and networks from attacks by malicious actors that may result in unauthorized information disclosure, theft of, or damage to hardware, software, or data, as well as from the disruption or misdirection of the services they provide. The field is significant due to the expanded reliance on computer systems, the Internet, and wireless network standards such as Bluetooth and Wi-Fi.
Network coding enables novel network functionalities and thus offers a wider canvas of choices when optimizing an information flow problem. In this paper, we examine the simplest possible information flow problem, a unicast connection, and explore what we ...