Wireless sensor networks (WSNs) refer to networks of spatially dispersed and dedicated sensors that monitor and record the physical conditions of the environment and forward the collected data to a central location. WSNs can measure environmental conditions such as temperature, sound, pollution levels, humidity and wind.
These are similar to wireless ad hoc networks in the sense that they rely on wireless connectivity and spontaneous formation of networks so that sensor data can be transported wirelessly. WSNs monitor physical conditions, such as temperature, sound, and pressure. Modern networks are bi-directional, both collecting data and enabling control of sensor activity. The development of these networks was motivated by military applications such as battlefield surveillance. Such networks are used in industrial and consumer applications, such as industrial process monitoring and control and machine health monitoring and agriculture.
A WSN is built of "nodes" – from a few to hundreds or thousands, where each node is connected to other sensors. Each such node typically has several parts: a radio transceiver with an internal antenna or connection to an external antenna, a microcontroller, an electronic circuit for interfacing with the sensors and an energy source, usually a battery or an embedded form of energy harvesting. A sensor node might vary in size from a shoebox to (theoretically) a grain of dust, although microscopic dimensions have yet to be realized. Sensor node cost is similarly variable, ranging from a few to hundreds of dollars, depending on node sophistication. Size and cost constraints constrain resources such as energy, memory, computational speed and communications bandwidth. The topology of a WSN can vary from a simple star network to an advanced multi-hop wireless mesh network. Propagation can employ routing or flooding.
In computer science and telecommunications, wireless sensor networks are an active research area supporting many workshops and conferences, including International Workshop on Embedded Networked Sensors (EmNetS), IPSN, SenSys, MobiCom and EWSN.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course provides in depth knowledge on how to design an energy autonomous microsystem embedding sensors with wireless transmission of information. It covers the energy generation, power management,
Le cours présente les enjeux mondiaux actuels liés à la communication instantanée et aux médias sociaux. L'approche interdisciplinaire intègre les SHS et les sciences de l'ingénieur et initie au trava
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
Dans une première partie, nous étudierons d’abord comment résoudre de manière très concrète un problème au moyen d’un algorithme, ce qui nous amènera dans un second temps à une des grandes questions d
A sensor node (also known as a mote in North America), consists of an individual node from a sensor network that is capable of performing a desired action such as gathering, processing or communicating information with other connected nodes in a network. Although wireless sensor networks have existed for decades and used for diverse applications such as earthquake measurements or warfare, the modern development of small sensor nodes dates back to the 1998 Smartdust project and the NASA.
Zigbee is an IEEE 802.15.4-based specification for a suite of high-level communication protocols used to create personal area networks with small, low-power digital radios, such as for home automation, medical device data collection, and other low-power low-bandwidth needs, designed for small scale projects which need wireless connection. Hence, Zigbee is a low-power, low data rate, and close proximity (i.e., personal area) wireless ad hoc network.
6LoWPAN (acronym of "IPv6 over Low-Power Wireless Personal Area Networks") was a working group of the Internet Engineering Task Force (IETF). It was created with the intention of applying the Internet Protocol (IP) even to the smallest devices, enabling low-power devices with limited processing capabilities to participate in the Internet of Things. The 6LoWPAN group defined encapsulation, header compression, neighbor discovery and other mechanisms that allow IPv6 to operate over IEEE 802.15.4 based networks.
Delves into energy-saving design principles in wireless sensor networks, exploring motivating applications and intelligent algorithms for energy efficiency.
A local area network (LAN) is a computer network that interconnects computers within a limited area such as a residence, school, laboratory, university campus or office building. By contrast, a wide area network (WAN) not only covers a larger geographic distance, but also generally involves leased telecommunication circuits. Ethernet and Wi-Fi are the two most common technologies in use for local area networks. Historical network technologies include ARCNET, Token Ring and AppleTalk.
Radio-frequency (RF) engineering is a subset of electronic engineering involving the application of transmission line, waveguide, antenna and electromagnetic field principles to the design and application of devices that produce or use signals within the radio band, the frequency range of about 20 kHz up to 300 GHz. It is incorporated into almost everything that transmits or receives a radio wave, which includes, but is not limited to, mobile phones, radios, WiFi, and two-way radios.
An embedded system is a computer system—a combination of a computer processor, computer memory, and input/output peripheral devices—that has a dedicated function within a larger mechanical or electronic system. It is embedded as part of a complete device often including electrical or electronic hardware and mechanical parts. Because an embedded system typically controls physical operations of the machine that it is embedded within, it often has real-time computing constraints. Embedded systems control many devices in common use.
Connectivity is an important key performance indicator and a focal point of research in large-scale wireless networks. Due to path-loss attenuation of electromagnetic waves, direct wireless connectivity is limited to proximate devices. Nevertheless, connec ...
The wireless sensor nodes used for monitoring the condition of grid equipment always be powered by disposable batteries. However, it introduces disadvantages, such as inconvenient replacement, short lifespan, and envi-ronmental pollution, significantly imp ...
This paper introduces Wireless IoT-based Noise Cancellation (WINC) which defines a framework for leveraging a wireless network of IoT microphones to enhance active noise cancellation in noise-canceling headphones. The IoT microphones forward ambient noise ...