Concept

Low-density lipoprotein receptor-related protein 8

Low-density lipoprotein receptor-related protein 8 (LRP8), also known as apolipoprotein E receptor 2 (ApoER2), is a protein that in humans is encoded by the LRP8 gene. ApoER2 is a cell surface receptor that is part of the low-density lipoprotein receptor family. These receptors function in signal transduction and endocytosis of specific ligands. Through interactions with one of its ligands, reelin, ApoER2 plays an important role in embryonic neuronal migration and postnatal long-term potentiation. Another LDL family receptor, VLDLR, also interacts with reelin, and together these two receptors influence brain development and function. Decreased expression of ApoER2 is associated with certain neurological diseases. ApoER2 is a protein made up of 870 amino acids. It is separated into a ligand binding domain of eight ligand binding regions, an EGF-like domain containing three cysteine-rich repeats, an O-linked glycosylation domain of 89 amino acids, a transmembrane domain of 24 amino acids, and a cytoplasmic domain of 115 amino acids, including an NPXY motif. Each letter in the NPXY motif represents a certain amino acid where N is arginine, P is proline, X is any amino acid, and Y is tyrosine. All LDL receptor family proteins contain a cytoplasmic tail with at least one NPXY motif. This motif is important for binding intracellular adapter proteins and endocytosis. ApoER2 is distinct from most other members of the LDL family of receptors due to a unique insert on its cytoplasmic tail. In ApoER2, there is a proline-rich 59 amino acid insert encoded by the alternatively spliced exon 19. This insert allows for protein interactions that are unable to occur with other LDL receptors. It binds the PSD-95 adapter protein, cross-linking ApoER2 and the NMDA receptors during the process of long-term potentiation, and is also bound specifically by JIP-2, an important interaction in the JNK signalling pathway. It is also speculated that this insert may diminish the function of ApoER2 in lipoprotein endocytosis by somehow disrupting the NPXY motif.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.