Summary
The impact factor (IF) or journal impact factor (JIF) of an academic journal is a scientometric index calculated by Clarivate that reflects the yearly mean number of citations of articles published in the last two years in a given journal, as indexed by Clarivate's Web of Science. As a journal-level metric, it is frequently used as a proxy for the relative importance of a journal within its field; journals with higher impact factor values are given the status of being more important, or carry more prestige in their respective fields, than those with lower values. While frequently used by universities and funding bodies to decide on promotion and research proposals, it has come under attack for distorting good scientific practices. The impact factor was devised by Eugene Garfield, the founder of the Institute for Scientific Information (ISI) in Philadelphia. Impact factors began to be calculated yearly starting from 1975 for journals listed in the Journal Citation Reports (JCR). ISI was acquired by Thomson Scientific & Healthcare in 1992, and became known as Thomson ISI. In 2018, Thomson-Reuters spun off and sold ISI to Onex Corporation and Baring Private Equity Asia. They founded a new corporation, Clarivate, which is now the publisher of the JCR. In any given year, the two-year journal impact factor is the ratio between the number of citations received in that year for publications in that journal that were published in the two preceding years and the total number of "citable items" published in that journal during the two preceding years: For example, Nature had an impact factor of 41.577 in 2017: This means that, on average, its papers published in 2015 and 2016 received roughly 42 citations each in 2017. 2017 impact factors are reported in 2018; they cannot be calculated until all of the 2017 publications have been processed by the indexing agency. The value of impact factor depends on how to define "citations" and "publications"; the latter are often referred to as "citable items".
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
CS-234: Technologies for democratic society
This course will offer students a broad but hands-on introduction to technologies of human self-organization.
ENG-610: How to prepare successful Grant proposals
You will learn where to look for appropriate fellowship or research funding, how to apply for specific instruments, and how to prepare a written application. You will also gain an understanding of how
HUM-485: Data in context: Critical Data Studies I
Le cours "Critical Data Studies" s'inscrit dans la nouvelle offre d'enseignements TILT qui propose de croiser des savoirs provenant des SHS et des sciences de l'ingénieur afin d'aborder des thématique
Related publications (37)
Related MOOCs (7)
Sorption and transport in cementitious materials
Learn how to study and improve the durability of cementitious materials.
Cement Chemistry and Sustainable Cementitious Materials
Learn the basics of cement chemistry and laboratory best practices for assessment of its key properties.
Matlab & octave for beginners
Premiers pas dans MATLAB et Octave avec un regard vers le calcul scientifique
Show more