An atmospheric radiative transfer model, code, or simulator calculates radiative transfer of electromagnetic radiation through a planetary atmosphere. At the core of a radiative transfer model lies the radiative transfer equation that is numerically solved using a solver such as a discrete ordinate method or a Monte Carlo method. The radiative transfer equation is a monochromatic equation to calculate radiance in a single layer of the Earth's atmosphere. To calculate the radiance for a spectral region with a finite width (e.g., to estimate the Earth's energy budget or simulate an instrument response), one has to integrate this over a band of frequencies (or wavelengths). The most exact way to do this is to loop through the frequencies of interest, and for each frequency, calculate the radiance at this frequency. For this, one needs to calculate the contribution of each spectral line for all molecules in the atmospheric layer; this is called a line-by-line calculation. For an instrument response, this is then convolved with the spectral response of the instrument. A faster but more approximate method is a band transmission. Here, the transmission in a region in a band is characterised by a set of pre-calculated coefficients (depending on temperature and other parameters). In addition, models may consider scattering from molecules or particles, as well as polarisation; however, not all models do so. Radiative transfer codes are used in broad range of applications. They are commonly used as forward models for the retrieval of geophysical parameters (such as temperature or humidity). Radiative transfer models are also used to optimize solar photovoltaic systems for renewable energy generation. Another common field of application is in a weather or climate model, where the radiative forcing is calculated for greenhouse gases, aerosols, or clouds. In such applications, radiative transfer codes are often called radiation parameterization. In these applications, the radiative transfer codes are used in forward sense, i.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
ME-465: Advanced heat transfer
The course will deepen the fundamentals of heat transfer. Particular focus will be put on radiative and convective heat transfer, and computational approaches to solve complex, coupled heat transfer p
Séances de cours associées (13)
Transfert radiatif de chaleur : milieux particulaires
Explore le transfert radiatif de chaleur dans les milieux participants, couvrant les conditions limites, l'absorption et la diffusion par les particules sphériques.
Propriétés radiatives des milieux particulaires: théorie Mie et applications
Discute des propriétés radiatives des milieux particulaires, en se concentrant sur la théorie Mie et ses applications pratiques dans l'analyse des interactions de la lumière avec les particules.
Transfert radiatif dans les médias participants : concepts et équations clés
Discute du transfert radiatif dans les médias participants, en se concentrant sur des concepts clés tels que l'atténuation, les coefficients d'extinction et l'équation de transfert radiatif.
Afficher plus
Publications associées (13)

PINION: physics-informed neural network for accelerating radiative transfer simulations for cosmic reionization

Jean-Paul Richard Kneib, Michele Bianco

With the advent of the Square Kilometre Array Observatory (SKAO), scientists will be able to directly observe the Epoch of Reionization by mapping the distribution of neutral hydrogen at different redshifts. While physically motivated results can be simula ...
OXFORD UNIV PRESS2023

Importance of 3D radiative transfer effects on high-resolution NO2 remote sensing in cities

Marc Damien Schwärzel

Urban air quality is a major concern in the context of human health since cities are at the same time emission hot spots and home to a large fraction of the world's population. Airborne imaging spectrometers may be a valuable addition to traditional air po ...
EPFL2022

Numerical characterization and engineering of transport in morphologically complex heterogeneous media

Xiaoyu Dai

A multi-scale numerical methodology for the assessment of radiation and optical characteristics of complex structured soot-contaminated snow layers was investigated first. The methodology accounted for the exact morphology at the various scales and utilize ...
EPFL2021
Afficher plus
Concepts associés (2)
Light scattering by particles
Light scattering by particles is the process by which small particles (e.g. ice crystals, dust, atmospheric particulates, cosmic dust, and blood cells) scatter light causing optical phenomena such as the blue color of the sky, and halos. Maxwell's equations are the basis of theoretical and computational methods describing light scattering, but since exact solutions to Maxwell's equations are only known for selected particle geometries (such as spherical), light scattering by particles is a branch of computational electromagnetics dealing with electromagnetic radiation scattering and absorption by particles.
Théorie de Mie
En optique ondulatoire, la théorie de Mie, ou solution de Mie, est une solution particulière des équations de Maxwell décrivant la diffusion élastique – c'est-à-dire sans changement de longueur d'onde – d'une onde électromagnétique plane par une particule sphérique caractérisée par son diamètre et son indice de réfraction complexe. Elle tire son nom du physicien allemand Gustav Mie, qui la décrivit en détail en 1908. Le travail de son prédécesseur Ludvig Lorenz est aujourd'hui reconnu comme « empiriquement équivalent » et l'on parle parfois de la théorie de Lorenz-Mie.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.