The Cray-3 was a vector supercomputer, Seymour Cray's designated successor to the Cray-2. The system was one of the first major applications of gallium arsenide (GaAs) semiconductors in computing, using hundreds of custom built ICs packed into a CPU. The design goal was performance around 16 GFLOPS, about 12 times that of the Cray-2.
Work started on the Cray-3 in 1988 at Cray Research's (CRI) development labs in Chippewa Falls, Wisconsin. Other teams at the lab were working on designs with similar performance. To focus the teams, the Cray-3 effort was moved to a new lab in Colorado Springs, Colorado later that year. Shortly thereafter, the corporate headquarters in Minneapolis decided to end work on the Cray-3 in favor of another design, the Cray C90. In 1989 the Cray-3 effort was spun off to a newly formed company, Cray Computer Corporation (CCC).
The launch customer, Lawrence Livermore National Laboratory, cancelled their order in 1991 and a number of company executives left shortly thereafter. The first machine was finally ready in 1993, but with no launch customer, it was instead loaned as a demonstration unit to the nearby National Center for Atmospheric Research in Boulder. The company went bankrupt in May 1995, and the machine was officially decommissioned.
With the delivery of the first Cray-3, Seymour Cray immediately moved on to the similar-but-improved Cray-4 design, but the company went bankrupt before it was completely tested. The Cray-3 was Cray's last completed design; with CCC's bankruptcy, he formed SRC Computers to concentrate on parallel designs, but died in a car accident in 1996 before this work was delivered.
Seymour Cray began the design of the Cray-3 in 1985, as soon as the Cray-2 reached production. Cray generally set himself the goal of producing new machines with ten times the performance of the previous models. Although the machines did not always meet this goal, this was a useful technique in defining the project and clarifying what sort of process improvements would be needed to meet it.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The term supercomputing arose in the late 1920s in the United States in response to the IBM tabulators at Columbia University. The CDC 6600, released in 1964, is sometimes considered the first supercomputer. However, some earlier computers were considered supercomputers for their day such as the 1954 IBM NORC in the 1950s, and in the early 1960s, the UNIVAC LARC (1960), the IBM 7030 Stretch (1962), and the Manchester Atlas (1962), all of which were of comparable power.
Cray Inc., a subsidiary of Hewlett Packard Enterprise, is an American supercomputer manufacturer headquartered in Seattle, Washington. It also manufactures systems for data storage and analytics. Several Cray supercomputer systems are listed in the TOP500, which ranks the most powerful supercomputers in the world. Cray manufactures its products in part in Chippewa Falls, Wisconsin, where its founder, Seymour Cray, was born and raised.
The Cray-1 was a supercomputer designed, manufactured and marketed by Cray Research. Announced in 1975, the first Cray-1 system was installed at Los Alamos National Laboratory in 1976. Eventually, eighty Cray-1s were sold, making it one of the most successful supercomputers in history. It is perhaps best known for its unique shape, a relatively small C-shaped cabinet with a ring of benches around the outside covering the power supplies and the cooling system. The Cray-1 was the first supercomputer to successfully implement the vector processor design.
An efficient implementation of Cundall's model on the Cray T3D massively parallel computer is presented. This model is used to simulate granular media where every grain is identified separately, generating very time-consuming simulations. First, we show a ...
A two-dimensional PIC code aimed at the investigation of electron-cyclotron beam instabilities in gyrotrons and their effects on the beam quality is presented. The code is based on recently developed techniques for handling charge conservation and open bou ...
A two-dimensional PIC code aimed at the investigation of electron-cyclotron beam instabilities in gyrotrons and their effects on the beam quality is presented, The code is based on recently developed techniques for handling charge conservation and open bou ...