Babbitt metal or bearing metal is any of several alloys used for the bearing surface in a plain bearing.
The original Babbitt alloy was invented in 1839 by Isaac Babbitt in Taunton, Massachusetts, United States. He disclosed one of his alloy recipes but kept others as trade secrets. Other formulations were developed later. Like other terms whose eponymous origin is long since deemphasized (such as diesel engine or eustachian tube), the term babbitt metal is frequently styled in lowercase. It is preferred over the term "white metal", because the latter term may refer to various bearing alloys, lead- or tin-based alloys, or zinc die-casting metal.
Babbitt metal is most commonly used as a thin surface layer in a complex, multi-metal assembly, but its original use was as a cast-in-place bulk bearing material. Babbitt metal is characterized by its resistance to galling. Babbitt metal is soft and easily damaged, which suggests that it might be unsuitable for a bearing surface. However, its structure is made up of small hard crystals dispersed in a softer metal, which makes it, technically, a metal matrix composite. As the bearing wears, the softer metal erodes somewhat, creating paths for lubricant between the hard high spots that provide the actual bearing surface. When tin is used as the softer metal, friction causes the tin to melt and function as a lubricant, protecting the bearing from wear when other lubricants are absent.
Internal combustion engines use Babbitt metal which is primarily tin-based because it can withstand cyclic loading.
In the traditional style of a babbitt metal bearing, a cast iron pillow block is assembled as a loose fit around the shaft, with the shaft in its approximate final position. The inner face of the cast iron pillow block is often drilled to form a key to locate the bearing metal as it is cast into place. The shaft is coated with soot as a release agent, the ends of the bearing are packed with clay to form a mold, and molten metal is poured into the cavity around the shaft, initially filling the lower half of the pillow block.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours permet l'acquisition des notions essentielles relatives à la structure de la matière, aux équilibres et à la réactivité chimique en liaison avec les propriétés mécaniques, thermiques, électri
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
This course gives an introduction to production methods and manufacturing technologies used in microengineering. The focus is given on the understanding of physical phenomena underlying the processes,
A thrust bearing is a particular type of rotary bearing. Like other bearings they permanently rotate between parts, but they are designed to support a predominantly axial load. Thrust bearings come in several varieties. Thrust ball bearings, composed of bearing balls supported in a ring, can be used in low thrust applications where there is little axial load. Cylindrical thrust roller bearings consist of small cylindrical rollers arranged flat with their axes pointing to the axis of the bearing.
Brass is an alloy of copper (Cu) and zinc (Zn), in proportions which can be varied to achieve different colours and mechanical, electrical, and chemical properties, but copper typically has the larger proportion. In use since prehistoric times, it is a substitutional alloy: atoms of the two constituents may replace each other within the same crystal structure. Brass is similar to bronze, another copper alloy that uses tin instead of zinc.
Covers the structure of metallic alloys, ceramics, and organic materials, including crystalline structures and defects in crystals.
, ,
Gas bearings use pressurized gas as a lubricant to support and guide rotating machinery. These bearings have a number of advantages over traditional lubricated bearings, including higher efficiency in a variety of applications and reduced maintenance requi ...
2024
, ,
This study reports the development of a new Ti-Zr-Mn-based AB 2 type hydrogen storage alloys for a two-stage metal hydride hydrogen compressor (MHHC). The hydrogen storage alloys are designed to compress hydrogen from 35 to 865 bar within a temperature dif ...
Gas bearings use pressurized gas as a lubricant to support and guide rotating machinery. These bearings have a number of advantages over traditional lubricated bearings, including higher efficiency in a variety of applications and reduced maintenance requi ...