Concept

Classification of Fatou components

In mathematics, Fatou components are components of the Fatou set. They were named after Pierre Fatou. If f is a rational function defined in the extended complex plane, and if it is a nonlinear function (degree > 1) then for a periodic component of the Fatou set, exactly one of the following holds: contains an attracting periodic point is parabolic is a Siegel disc: a simply connected Fatou component on which f(z) is analytically conjugate to a Euclidean rotation of the unit disc onto itself by an irrational rotation angle. is a Herman ring: a double connected Fatou component (an annulus) on which f(z) is analytically conjugate to a Euclidean rotation of a round annulus, again by an irrational rotation angle. File:Julia-set_N_z3-1.png|Julia set (white) and Fatou set (dark red/green/blue) for f: z\mapsto z-\frac{g}{g'}(z) with g: z \mapsto z^3-1 in the complex plane. Cauliflower Julia set DLD field lines.png|Julia set with parabolic cycle Quadratic Golden Mean Siegel Disc Average Velocity - Gray.png|Julia set with [[Siegel disc]] (elliptic case) Herman Standard.png|Julia set with [[Herman ring]] The components of the map contain the attracting points that are the solutions to . This is because the map is the one to use for finding solutions to the equation by Newton–Raphson formula. The solutions must naturally be attracting fixed points. Julia-Set z2+c 0 0.png|Dynamic plane consist of Fatou 2 superattracting period 1 basins, each has only one component. Basilica_Julia_set_-_DLD.png|Level curves and rays in superattractive case Basilica Julia set, level curves of escape and attraction time.png|Julia set with superattracting cycles (hyperbolic) in the interior ( perieod 2) and the exterior (period 1) The map and t = 0.6151732... will produce a Herman ring. It is shown by Shishikura that the degree of such map must be at least 3, as in this example. If degree d is greater than 2 then there is more than one critical point and then can be more than one type of component Herman+Parabolic.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.