A pheromone () is a secreted or excreted chemical factor that triggers a social response in members of the same species. Pheromones are chemicals capable of acting like hormones outside the body of the secreting individual, to affect the behavior of the receiving individuals. There are alarm pheromones, food trail pheromones, sex pheromones, and many others that affect behavior or physiology. Pheromones are used by many organisms, from basic unicellular prokaryotes to complex multicellular eukaryotes. Their use among insects has been particularly well documented. In addition, some vertebrates, plants and ciliates communicate by using pheromones. The ecological functions and evolution of pheromones are a major topic of research in the field of chemical ecology.
The portmanteau word "pheromone" was coined by Peter Karlson and Martin Lüscher in 1959, based on the Greek φέρω phérō ('I carry') and ὁρμων hórmōn ('stimulating'). Pheromones are also sometimes classified as ecto-hormones. They were researched earlier by various scientists, including Jean-Henri Fabre, Joseph A. Lintner, Adolf Butenandt, and ethologist Karl von Frisch who called them various names, like for instance "alarm substances". These chemical messengers are transported outside of the body and affect neurocircuits, including the autonomous nervous system with hormone or cytokine mediated physiological changes, inflammatory signaling, immune system changes and/or behavioral change in the recipient. They proposed the term to describe chemical signals from conspecifics that elicit innate behaviors soon after the German biochemist Adolf Butenandt had characterized the first such chemical, bombykol, a chemically well-characterized pheromone released by the female silkworm to attract mates.
Aggregation pheromones function in mate choice, overcoming host resistance by mass attack, and defense against predators. A group of individuals at one location is referred to as an aggregation, whether consisting of one sex or both sexes.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The goal of this course is to provide methods and tools for modeling distributed intelligent systems as well as designing and optimizing coordination strategies. The course is a well-balanced mixture
Explores self-organization in natural systems and foraging strategies of ants, including the Traveling Salesman Problem and Ant Colony Optimization algorithms.
Explores Ant Colony Optimization (ACO) for routing and optimization, discussing constructive heuristics, local search, pheromone mechanisms, and real-world applications.
Insects (from Latin insectum) are pancrustacean hexapod invertebrates of the class Insecta. They are the largest group within the arthropod phylum. Insects have a chitinous exoskeleton, a three-part body (head, thorax and abdomen), three pairs of jointed legs, compound eyes and one pair of antennae. Their blood is not totally contained in vessels; some circulates in an open cavity known as the haemocoel. Insects are the most diverse group of animals; they include more than a million described species and represent more than half of all known living organisms.
Antennae (: antenna), sometimes referred to as "feelers", are paired appendages used for sensing in arthropods. Antennae are connected to the first one or two segments of the arthropod head. They vary widely in form but are always made of one or more jointed segments. While they are typically sensory organs, the exact nature of what they sense and how they sense it is not the same in all groups. Functions may variously include sensing touch, air motion, heat, vibration (sound), and especially smell or taste.
The sense of smell, or olfaction, is the special sense through which smells (or odors) are perceived. The sense of smell has many functions, including detecting desirable foods, hazards, and pheromones, and plays a role in taste. In humans, it occurs when an odor binds to a receptor within the nasal cavity, transmitting a signal through the olfactory system. Glomeruli aggregate signals from these receptors and transmit them to the olfactory bulb, where the sensory input will start to interact with parts of the brain responsible for smell identification, memory, and emotion.
The ecological success of ants relies on their ability to discover and collectively exploit available resources. In this process, the nest entrances are key locations at which foragers transfer food and information about the surrounding environment. We ass ...
ROYAL SOC2020
, , ,
Oviparous animals across many taxa have evolved diverse strategies that deter egg predation, providing valuable tests of how natural selection mitigates direct fitness loss. Communal egg laying in nonsocial species minimizes egg predation. However, in cann ...
Cholera, caused by the bacterium Vibrio cholerae, has affected humanity throughout history and still impacts millions of people every year. Apart from being a human pathogen, V. cholerae is a common member of the aquatic environment. Due to this natural re ...