In hydrology, a well test is conducted to evaluate the amount of water that can be pumped from a particular water well. More specifically, a well test will allow prediction of the maximum rate at which water can be pumped from a well, and the distance that the water level in the well will fall for a given pumping rate and duration of pumping.
Well testing differs from aquifer testing in that the behaviour of the well is primarily of concern in the former, while the characteristics of the aquifer (the geological formation or unit that supplies water to the well) are quantified in the latter.
When water is pumped from a well the water level in the well falls. This fall is called drawdown. The amount of water that can be pumped is limited by the drawdown produced. Typically, drawdown also increases with the length of time that the pumping continues.
The components of observed drawdown in a pumping well were first described by Jacob (1947), and the test was refined independently by Hantush (1964) and Bierschenk (1963) as consisting of two related components,
where s is drawdown (units of length e.g., m), is the pumping rate (units of volume flowrate e.g., m3/day), is the aquifer loss coefficient (which increases with time — as predicted by the Theis solution) and is the well loss coefficient (which is constant for a given flow rate).
The first term of the equation () describes the linear component of the drawdown; i.e., the part in which doubling the pumping rate doubles the drawdown.
The second term () describes what is often called the 'well losses'; the non-linear component of the drawdown. To quantify this it is necessary to pump the well at several different flow rates (commonly called steps). Rorabaugh (1953) added to this analysis by making the exponent an arbitrary power (usually between 1.5 and 3.5).
To analyze this equation, both sides are divided by the discharge rate (), leaving on the left side, which is commonly referred to as specific drawdown. The right hand side of the equation becomes that of a straight line.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
"Hydrology for Engineers" is an introduction to the study of floods, droughts and a fair distribution of water. The course will introduce basic hydrologic concepts and methods: probability and statist
The goal of this course is to introduce the student to modern numerical methods for the solution of coupled & non-linear problems arising in geo-mechanics / geotechnical engineering.
In hydrogeology, an aquifer test (or a pumping test) is conducted to evaluate an aquifer by "stimulating" the aquifer through constant pumping, and observing the aquifer's "response" (drawdown) in observation wells. Aquifer testing is a common tool that hydrogeologists use to characterize a system of aquifers, aquitards and flow system boundaries. A slug test is a variation on the typical aquifer test where an instantaneous change (increase or decrease) is made, and the effects are observed in the same well.
A well is an excavation or structure created in the ground by digging, driving, or drilling to access liquid resources, usually water. The oldest and most common kind of well is a water well, to access groundwater in underground aquifers. The well water is drawn up by a pump, or using containers, such as buckets or large water bags that are raised mechanically or by hand. Water can also be injected back into the aquifer through the well.
Hydrogeology (hydro- meaning water, and -geology meaning the study of the Earth) is the area of geology that deals with the distribution and movement of groundwater in the soil and rocks of the Earth's crust (commonly in aquifers). The terms groundwater hydrology, geohydrology, and hydrogeology are often used interchangeably. Hydrogeology is the study of the laws governing the movement of subterranean water, the mechanical, chemical, and thermal interaction of this water with the porous solid, and the transport of energy, chemical constituents, and particulate matter by flow (Domenico and Schwartz, 1998).
Fuzzing reliably and efficiently finds bugs in software, including operating system kernels. In general, higher code coverage leads to the discovery of more bugs. This is why most existing kernel fuzzers adopt strategies to generate a series of inputs that ...
Semi-analytical solutions are presented for flow to a well in an extensive homogeneous and anisotropic unconfined-fractured aquifer system separated by an aquitard. The pumping well is of infinitesimal radius and screened in either the overlying unconfined ...
water scarcity, millions of people are subject to insufficient access to safe drinking water and sanitation services in Lebanon. Too often, water scarcity is interpreted as a natural phenomena or the result of technical failures, neglecting the fact that i ...