The Blackfin is a family of 16-/32-bit microprocessors developed, manufactured and marketed by Analog Devices. The processors have built-in, fixed-point digital signal processor (DSP) functionality supplied by 16-bit multiply–accumulates (MACs), accompanied on-chip by a microcontroller. It was designed for a unified low-power processor architecture that can run operating systems while simultaneously handling complex numeric tasks such as real-time H.264 video encoding.
Blackfin processors use a 32-bit RISC microcontroller programming model on a SIMD architecture, which was co-developed by Intel and Analog Devices, as MSA (Micro Signal Architecture).
The architecture was announced in December 2000, and first demonstrated at the Embedded Systems Conference in June, 2001.
It incorporates aspects of ADI's older SHARC architecture and Intel's XScale architecture into a single core, combining digital signal processing (DSP) and microcontroller functionality. There are many differences in the core architecture between Blackfin/MSA and XScale/ARM or SHARC, but the combination was designed to improve performance, programmability and power consumption over traditional DSP or RISC architecture designs.
The Blackfin architecture encompasses various CPU models, each targeting particular applications. The BF-7xx series, introduced in 2014, comprise the Blackfin+ architecture, which expands on the Blackfin architecture with some new processor features and instructions.
What is regarded as the Blackfin "core" is contextually dependent. For some applications, the DSP features are central. Blackfin has two 16-bit hardware MACs, two 40-bit ALUs and accumulators, a 40-bit barrel shifter, and four 8-bit video ALUs; Blackfin+ processors add a 32-bit MAC and 72-bit accumulator. This allows the processor to execute up to three instructions per clock cycle, depending on the level of optimization performed by the compiler or programmer. Two nested zero-overhead loops and four circular buffer DAGs (data address generators) are designed to assist in writing efficient code requiring fewer instructions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A multi-core processor is a microprocessor on a single integrated circuit with two or more separate processing units, called cores, each of which reads and executes program instructions. The instructions are ordinary CPU instructions (such as add, move data, and branch) but the single processor can run instructions on separate cores at the same time, increasing overall speed for programs that support multithreading or other parallel computing techniques.
XScale is a microarchitecture for central processing units initially designed by Intel implementing the ARM architecture (version 5) instruction set. XScale comprises several distinct families: IXP, IXC, IOP, PXA and CE (see more below), with some later models designed as system-on-a-chip (SoC). Intel sold the PXA family to Marvell Technology Group in June 2006. Marvell then extended the brand to include processors with other microarchitectures, like Arm's Cortex.
The miniaturization of integrated circuits (ICs) and their higher performance and energy efficiency, combined with new machine learning algorithms and applications, have paved the way to intelligent, interconnected edge devices. In the medical domain, they ...
Embedded systems confront two opposite goals: low-power operation and high performance. The current trend to reach these goals is toward heterogeneous platforms, including multi-core architectures with heterogeneous cores and hardware accelerators. The lat ...
2023
, , ,
The increasing adoption of smart systems in our daily life has led to the development of new applications with varying performance and energy constraints, and suitable computing architectures need to be developed for these new applications. In this paper, ...