In set theory, a branch of mathematical logic, an inner model for a theory T is a substructure of a model M of a set theory that is both a model for T and contains all the ordinals of M.
Let be the language of set theory. Let S be a particular set theory, for example the ZFC axioms and let T (possibly the same as S) also be a theory in .
If M is a model for S, and N is an -structure such that
N is a substructure of M, i.e. the interpretation of in N is
N is a model for T
the domain of N is a transitive class of M
N contains all ordinals of M
then we say that N is an inner model of T (in M). Usually T will equal (or subsume) S, so that N is a model for S 'inside' the model M of S.
If only conditions 1 and 2 hold, N is called a standard model of T (in M), a standard submodel of T (if S = T and) N is a set in M. A model N of T in M is called transitive when it is standard and condition 3 holds. If the axiom of foundation is not assumed (that is, is not in S) all three of these concepts are given the additional condition that N be well-founded. Hence inner models are transitive, transitive models are standard, and standard models are well-founded.
The assumption that there exists a standard submodel of ZFC (in a given universe) is stronger than the assumption that there exists a model. In fact, if there is a standard submodel, then there is a smallest standard submodel
called the minimal model contained in all standard submodels. The minimal submodel contains no standard submodel (as it is minimal) but (assuming the consistency of ZFC) it contains
some model of ZFC by the Gödel completeness theorem. This model is necessarily not well-founded otherwise its Mostowski collapse would be a standard submodel. (It is not well-founded as a relation in the universe, though it
satisfies the axiom of foundation so is "internally" well-founded. Being well-founded is not an absolute property.)
In particular in the minimal submodel there is a model of ZFC but there is no standard submodel of ZFC.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
In mathematical set theory, a set S is said to be ordinal definable if, informally, it can be defined in terms of a finite number of ordinals by a first-order formula. Ordinal definable sets were introduced by . A drawback to this informal definition is that it requires quantification over all first-order formulas, which cannot be formalized in the language of set theory. However there is a different way of stating the definition that can be so formalized.
In set theory, a branch of mathematics, a set is called transitive if either of the following equivalent conditions hold: whenever , and , then . whenever , and is not an urelement, then is a subset of . Similarly, a class is transitive if every element of is a subset of . Using the definition of ordinal numbers suggested by John von Neumann, ordinal numbers are defined as hereditarily transitive sets: an ordinal number is a transitive set whose members are also transitive (and thus ordinals).
In mathematical logic, two theories are equiconsistent if the consistency of one theory implies the consistency of the other theory, and vice versa. In this case, they are, roughly speaking, "as consistent as each other". In general, it is not possible to prove the absolute consistency of a theory T. Instead we usually take a theory S, believed to be consistent, and try to prove the weaker statement that if S is consistent then T must also be consistent—if we can do this we say that T is consistent relative to S.
We propose a new approach for normalization and simplification of logical formulas. Our approach is based on algorithms for lattice-like structures. Specifically, we present two efficient algorithms for computing a normal form and deciding the word problem ...
We present a quasilinear time algorithm to decide the word problem on a natural algebraic structures we call orthocomplemented bisemilattices, a subtheory of boolean algebra. We use as a base a variation of Hopcroft, Ullman and Aho algorithm for tree isomo ...