A mercury-vapor lamp is a gas-discharge lamp that uses an electric arc through vaporized mercury to produce light. The arc discharge is generally confined to a small fused quartz arc tube mounted within a larger soda lime or borosilicate glass bulb. The outer bulb may be clear or coated with a phosphor; in either case, the outer bulb provides thermal insulation, protection from the ultraviolet radiation the light produces, and a convenient mounting for the fused quartz arc tube.
Mercury vapor lamps are more energy efficient than incandescent lamps with luminous efficacies of 35 to 55 lumens/watt. Their other advantages are a long bulb lifetime in the range of 24,000 hours and a high intensity, clear white light output. For these reasons, they are used for large area overhead lighting, such as in factories, warehouses, and sports arenas as well as for streetlights. Clear mercury lamps produce a greenish light due to mercury's combination of spectral lines. This is not flattering to human skin color, so such lamps are typically not used in retail stores. "Color corrected" mercury bulbs overcome this problem with a phosphor on the inside of the outer bulb that emits at the red wavelengths, offering whiter light and better color rendition.
Mercury vapor lights operate at an internal pressure of around one atmosphere and require special fixtures, as well as an electrical ballast. They also require a warm-up period of four to seven minutes to reach full light output. Mercury vapor lamps are becoming obsolete due to the higher efficiency and better color balance of metal halide lamps.
Charles Wheatstone observed the spectrum of an electric discharge in mercury vapor in 1835, and noted the ultraviolet lines in that spectrum. In 1860, John Thomas Way used arc lamps operated in a mixture of air and mercury vapor at atmospheric pressure for lighting. The German physicist Leo Arons (1860–1919) studied mercury discharges in 1892 and developed a lamp based on a mercury arc. In February 1896 Herbert John Dowsing and H. S.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ce cours couvre les fondements des systèmes numériques. Sur la base d'algèbre Booléenne et de circuitscombinatoires et séquentiels incluant les machines d'états finis, les methodes d'analyse et de syn
Introduction to geometrical and wave optics for understanding the principles of optical microscopes, their advantages and limitations. Describing the basic microscopy components and the commonly used
The most important clinical diagnostic and therapeutic applications of light will be described. In addition, this course will address the principles governing the interactions between light and biolog
A metal-halide lamp is an electrical lamp that produces light by an electric arc through a gaseous mixture of vaporized mercury and metal halides (compounds of metals with bromine or iodine). It is a type of high-intensity discharge (HID) gas discharge lamp. Developed in the 1960s, they are similar to mercury vapor lamps, but contain additional metal halide compounds in the quartz arc tube, which improve the efficiency and color rendition of the light. The most common metal halide compound used is sodium iodide.
Gas-discharge lamps are a family of artificial light sources that generate light by sending an electric discharge through an ionized gas, a plasma. Typically, such lamps use a noble gas (argon, neon, krypton, and xenon) or a mixture of these gases. Some include additional substances, such as mercury, sodium, and metal halides, which are vaporized during start-up to become part of the gas mixture. Single-ended self-starting lamps are insulated with a mica disc and contained in a borosilicate glass gas discharge tube (arc tube) and a metal cap.
A blacklight, also called a UV-A light, Wood's lamp, or ultraviolet light, is a lamp that emits long-wave (UV-A) ultraviolet light and very little visible light. One type of lamp has a violet filter material, either on the bulb or in a separate glass filter in the lamp housing, which blocks most visible light and allows through UV, so the lamp has a dim violet glow when operating. Blacklight lamps which have this filter have a lighting industry designation that includes the letters "BLB". This stands for "blacklight blue".
Over the past twenty years, photochemical transformations have gained in importance in organic chemistry. Indeed, the development of photocatalysts has allowed the use of visible light as an energy source for chemical transformations. More specifically, ph ...
EPFL2022
, , ,
This review explores the potential of separating and recycling rare earth elements (REEs) from different energy conversion systems, such as wind turbines, electric vehicles batteries, or lighting devices. The REEs include 17 elements (with global productio ...
Here, we report photonic nanostructures replicated from the adaxial epidermis of flower petals onto light-polymerized coatings using low-cost nanoimprint lithography at ambient temperature. These multifunctional nanocoatings are applied to confer enhanced ...