Are you an EPFL student looking for a semester project?
Work with us on data science and visualisation projects, and deploy your project as an app on top of Graph Search.
In biochemistry, two biopolymers are antiparallel if they run parallel to each other but with opposite directionality (alignments). An example is the two complementary strands of a DNA double helix, which run in opposite directions alongside each other. Nucleic acid molecules have a phosphoryl (5') end and a hydroxyl (3') end. This notation follows from organic chemistry nomenclature, and can be used to define the movement of enzymes such as DNA polymerases relative to the DNA strand in a non-arbitrary manner. G-quadruplexes, also known as G4 DNA are secondary structures found in nucleic acids that are rich in guanine. These structures are normally located at the telomeres (the ends of the chromosomes). The G-quadruplex can either be parallel or antiparallel depending on the loop configuration, which is a component of the structure. If all the DNA strands run in the same direction, it is termed to be a parallel quadruplex, and is known as a strand-reversal/propeller, connecting adjacent parallel strands. If one or more of the DNA strands run in opposite direction, it is termed as an anti-parallel quadruplex, and can either be in a form of a lateral/edgewise, connecting adjacent anti-parallel strands, or a diagonal, joining two diagonally opposite strands. The structure of these G-quadruplexes can be determined by a cation. DNA Replication In DNA, the 5' carbon is located at the top of the leading strand, and the 3' carbon is located at the lower section of the lagging strand. The nucleic acid sequences are complementary and parallel, but they go in opposite directions, hence the antiparallel designation. The antiparallel structure of DNA is important in DNA replication because it replicates the leading strand one way and the lagging strand the other way. During DNA replication, the leading strand is replicated continuously whereas the lagging strand is replicated in segments known as Okazaki fragments. The importance of an antiparallel DNA double helix structure is because of its hydrogen bonding between the complementary nitrogenous base pairs.
Charlotte Julie Caroline Gehin