A relationship extraction task requires the detection and classification of semantic relationship mentions within a set of artifacts, typically from text or XML documents. The task is very similar to that of information extraction (IE), but IE additionally requires the removal of repeated relations (disambiguation) and generally refers to the extraction of many different relationships.
The concept of relationship extraction was first introduced during the 7th Message Understanding Conference in 1998. Relationship extraction involves the identification of relations between entities and it usually focuses on the extraction of binary relations. Application domains where relationship extraction is useful include gene-disease relationships, protein-protein interaction etc.
Current relationship extraction studies use machine learning technologies, which approach relationship extraction as a classification problem. Never-Ending Language Learning is a semantic machine learning system developed by a research team at Carnegie Mellon University that extracts relationships from the open web.
There are several methods used to extract relationships and these include text-based relationship extraction. These methods rely on the use of pretrained relationship structure information or it could entail the learning of the structure in order to reveal relationships. Another approach to this problem involves the use of domain ontologies. There is also the approach that involves visual detection of meaningful relationships in parametric values of objects listed on a data table that shift positions as the table is permuted automatically as controlled by the software user. The poor coverage, rarity and development cost related to structured resources such as semantic lexicons (e.g. WordNet, UMLS) and domain ontologies (e.g. the Gene Ontology) has given rise to new approaches based on broad, dynamic background knowledge on the Web. For instance, the ARCHILES technique uses only Wikipedia and search engine page count for acquiring coarse-grained relations to construct lightweight ontologies.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course introduces the foundations of information retrieval, data mining and knowledge bases, which constitute the foundations of today's Web-based distributed information systems.
Explores methods for information extraction, including traditional and embedding-based approaches, supervised learning, distant supervision, and taxonomy induction.
Explores information extraction, knowledge inference, taxonomy induction, and entity disambiguation.
WordNet is a lexical database of semantic relations between words that links words into semantic relations including synonyms, hyponyms, and meronyms. The synonyms are grouped into synsets with short definitions and usage examples. It can thus be seen as a combination and extension of a dictionary and thesaurus. While it is accessible to human users via a web browser, its primary use is in automatic text analysis and artificial intelligence applications.
Speaker detection is an important component of a speech-based user interface. Audiovisual speaker detection, speech and speaker recognition or speech synthesis for example find multiple applications in human-computer interaction, multimedia content indexin ...
This paper describes our conceptual framework of closed-loop lifecycle information sharing for product-service in the Internet of Things (IoT). The framework is based on the ontology model of product-service and a type of IoT message standard, Open Messagi ...
Research on automatic recognition of named entities from Arabic text uses techniques that work well for the Latin based languages such as local grammars, statistical learning models, pattern matching, and rule-based techniques. These techniques boost their ...