Thermodynamic heat pump cycles or refrigeration cycles are the conceptual and mathematical models for heat pump, air conditioning and refrigeration systems. A heat pump is a mechanical system that allows for the transmission of heat from one location (the "source") at a lower temperature to another location (the "sink" or "heat sink") at a higher temperature. Thus a heat pump may be thought of as a "heater" if the objective is to warm the heat sink (as when warming the inside of a home on a cold day), or a "refrigerator" or “cooler” if the objective is to cool the heat source (as in the normal operation of a freezer). In either case, the operating principles are similar. Heat is moved from a cold place to a warm place.
According to the second law of thermodynamics, heat cannot spontaneously flow from a colder location to a hotter area; work is required to achieve this. An air conditioner requires work to cool a living space, moving heat from the interior being cooled (the heat source) to the outdoors (the heat sink). Similarly, a refrigerator moves heat from inside the cold icebox (the heat source) to the warmer room-temperature air of the kitchen (the heat sink). The operating principle of an ideal heat engine was described mathematically using the Carnot cycle by Sadi Carnot in 1824. An ideal refrigerator or heat pump can be thought of as an ideal heat engine that is operating in a reverse Carnot cycle.
Heat pump cycles and refrigeration cycles can be classified as vapor compression, vapor absorption, gas cycle, or Stirling cycle types.
Vapor-compression refrigeration
The vapor-compression cycle is used by many refrigeration, air conditioning, and other cooling applications and also within heat pump for heating applications. There are two heat exchangers, one being the condenser, which is hotter and releases heat, and the other being the evaporator, which is colder and accepts heat. For applications which need to operate in both heating and cooling modes, a reversing valve is used to switch the roles of these two heat exchangers.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The activity of neurons in the brain and the code used by these neurons is described by mathematical neuron models at different levels of detail.
This course will discuss advanced topics in thermodynamics with a focus on studying gas
phases, mixtures, phase transformations and combustion. The application of these principles
to various practical
The student will learn advanced concepts in the field of process integration, process modeling and optimization for the design of integrated energy systems: Life cycle energy analysis.
This course aims at studying thermal power cycles, heat pumping technologies, and equipment.
Magnetic refrigeration is a cooling technology based on the magnetocaloric effect. This technique can be used to attain extremely low temperatures, as well as the ranges used in common refrigerators. A magnetocaloric material warms up when a magnetic field is applied. The warming is due to changes in the internal state of the material releasing heat. When the magnetic field is removed, the material returns to its original state, reabsorbing the heat, and returning to original temperature.
In thermodynamics, a temperature–entropy (T–s) diagram is a thermodynamic diagram used to visualize changes to temperature (T ) and specific entropy (s) during a thermodynamic process or cycle as the graph of a curve. It is a useful and common tool, particularly because it helps to visualize the heat transfer during a process. For reversible (ideal) processes, the area under the T–s curve of a process is the heat transferred to the system during that process. Working fluids are often categorized on the basis of the shape of their T–s diagram.
The coefficient of performance or COP (sometimes CP or CoP) of a heat pump, refrigerator or air conditioning system is a ratio of useful heating or cooling provided to work (energy) required. Higher COPs equate to higher efficiency, lower energy (power) consumption and thus lower operating costs. The COP usually exceeds 1, especially in heat pumps, because, instead of just converting work to heat (which, if 100% efficient, would be a COP of 1), it pumps additional heat from a heat source to where the heat is required.
The composition of the gaseous phase of cavitation bubbles and its role on the collapse remains to date poorly understood. In this work, experiments of single cavitation bubbles in aqueous ammonia serve as a novel approach to investigate the effect of the ...
Melville2024
, ,
Energy piles represent an innovative technology that can help provide sustainable geothermal heating or cooling energy for thermal conditioning purposes. In hot-dominated climates, the interest is to inject heat in the ground and extract energy for space-c ...
We study the problem of performance optimization of closed -loop control systems with unmodeled dynamics. Bayesian optimization (BO) has been demonstrated to be effective for improving closed -loop performance by automatically tuning controller gains or re ...