Concept

Inclusion order

In the mathematical field of order theory, an inclusion order is the partial order that arises as the subset-inclusion relation on some collection of objects. In a simple way, every poset P = (X,≤) is (isomorphic to) an inclusion order (just as every group is isomorphic to a permutation group – see Cayley's theorem). To see this, associate to each element x of X the set then the transitivity of ≤ ensures that for all a and b in X, we have There can be sets of cardinality less than such that P is isomorphic to the inclusion order on S. The size of the smallest possible S is called the 2-dimension of P. Several important classes of poset arise as inclusion orders for some natural collections, like the Boolean lattice Qn, which is the collection of all 2n subsets of an n-element set, the interval-containment orders, which are precisely the orders of order dimension at most two, and the dimension-n orders, which are the containment orders on collections of n-boxes anchored at the origin. Other containment orders that are interesting in their own right include the circle orders, which arise from disks in the plane, and the angle orders.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.