Concept

Classical mathematics

In the foundations of mathematics, classical mathematics refers generally to the mainstream approach to mathematics, which is based on classical logic and ZFC set theory. It stands in contrast to other types of mathematics such as constructive mathematics or predicative mathematics. In practice, the most common non-classical systems are used in constructive mathematics. Classical mathematics is sometimes attacked on philosophical grounds, due to constructivist and other objections to the logic, set theory, etc., chosen as its foundations, such as have been expressed by L. E. J. Brouwer. Almost all mathematics, however, is done in the classical tradition, or in ways compatible with it. Defenders of classical mathematics, such as David Hilbert, have argued that it is easier to work in, and is most fruitful; although they acknowledge non-classical mathematics has at times led to fruitful results that classical mathematics could not (or could not so easily) attain, they argue that on the whole, it is the other way round.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.