A cryovolcano (sometimes informally called an ice volcano) is a type of volcano that erupts volatiles such as water, ammonia or methane into an extremely cold environment that is at or below their freezing point. The process of formation is known as cryovolcanism. Collectively referred to as cryomagma, cryolava or ice-volcanic melt, these substances are usually liquids and can form plumes, but can also be in vapour form. After the eruption, cryomagma is expected to condense to a solid form when exposed to the very low surrounding temperature. Cryovolcanoes may potentially form on icy moons and other objects with abundant water past the Solar System's snow line (such as Pluto). A number of features have been identified as possible cryovolcanoes on Pluto, Titan and Ceres, and a subset of domes on Europa may have cryovolcanic origins. In addition, although they are not known to form volcanoes, ice geysers have been observed on Enceladus and potentially Triton.
One potential energy source on some solar system bodies for melting ices and producing cryovolcanoes is tidal friction.
Signs of past warming of the Kuiper belt object Quaoar have led scientists to speculate that it exhibited cryovolcanism in the past. Radioactive decay could provide the energy necessary for such activity, as cryovolcanoes can emit water mixed with ammonia, which would melt at and create an extremely cold liquid that would flow out of the volcano.
On November 27, 2005, Cassini photographed geysers on the south pole of Enceladus. (See also: Enceladus (cryovolcanism).)
Indirect evidence of cryovolcanic activity was later observed on several other icy moons of the Solar System, including Europa, Titan, Ganymede, and Miranda. Cassini has observed several features thought to be cryovolcanoes on Titan, notably Doom Mons with adjacent Sotra Patera, a feature regarded as "the very best evidence, by far, for volcanic topography anywhere documented on an icy satellite." Cryovolcanism is one process hypothesized to be a significant source of the methane found in Titan's atmosphere.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Ceres (pronounced ˈsɪəriːz, ), minor-planet designation 1 Ceres, is a dwarf planet in the asteroid belt between the orbits of Mars and Jupiter. It was the first asteroid discovered, on 1 January 1801, by Giuseppe Piazzi at Palermo Astronomical Observatory in Sicily and announced as a new planet. Ceres was later classified as an asteroid and then a dwarf planet - the only one always inside Neptune's orbit. Ceres's small size means that even at its brightest, it is too dim to be seen by the naked eye, except under extremely dark skies.
A dwarf planet is a small planetary-mass object that is in direct orbit of the Sun, smaller than any of the eight classical planets but still a world in its own right. The prototypical dwarf planet is Pluto. The interest of dwarf planets to planetary geologists is that they may be geologically active bodies, an expectation that was borne out in 2015 by the Dawn mission to and the New Horizons mission to Pluto. Astronomers are in general agreement that at least the nine largest candidates are dwarf planets: , , , , , , , , and .
Ariel is the fourth-largest of the 27 known moons of Uranus. Ariel orbits and rotates in the equatorial plane of Uranus, which is almost perpendicular to the orbit of Uranus and so has an extreme seasonal cycle. It was discovered in October 1851 by William Lassell and named for a character in two different pieces of literature. As of 2019, much of the detailed knowledge of Ariel derives from a single flyby of Uranus performed by the space probe Voyager 2 in 1986, which managed to image around 35% of the moon's surface.
Volcanic eruptions result from complex interplay of magmatic processes including the ascent and storage of magma in the crust, volatile exsolution and crystallization. The dynamics of crystallization in shallow subvolcanic systems and the consequences of i ...
Hydrates of gas are non-stoichiometric inclusion compounds constituted of water and gas. Therein, the water molecules are hydrogen-bonded and form three-dimensional crystalline networks incorporating different kinds of polar or nonpolar guest gas molecules ...
Bolide impacts influence primordial evolution of planetary bodies because they can cause instantaneous melting and vaporization of both crust and impactors. Temperatures reached by impact-generated silicate melts are unknown because meteorite impacts are e ...