Summary
In granulometry, the particle-size distribution (PSD) of a powder, or granular material, or particles dispersed in fluid, is a list of values or a mathematical function that defines the relative amount, typically by mass, of particles present according to size. Significant energy is usually required to disintegrate soil, etc. particles into the PSD that is then called a grain size distribution. The PSD of a material can be important in understanding its physical and chemical properties. It affects the strength and load-bearing properties of rocks and soils. It affects the reactivity of solids participating in chemical reactions, and needs to be tightly controlled in many industrial products such as the manufacture of printer toner, cosmetics, and pharmaceutical products. Particle size distribution can greatly affect the efficiency of any collection device. Settling chambers will normally only collect very large particles, those that can be separated using sieve trays. Centrifugal collectors will normally collect particles down to about 20 μm. Higher efficiency models can collect particles down to 10 μm. Fabric filters are one of the most efficient and cost effective types of dust collectors available and can achieve a collection efficiency of more than 99% for very fine particles. Wet scrubbers that use liquid are commonly known as wet scrubbers. In these systems, the scrubbing liquid (usually water) comes into contact with a gas stream containing dust particles. The greater the contact of the gas and liquid streams, the higher the dust removal efficiency. Electrostatic precipitators use electrostatic forces to separate dust particles from exhaust gases. They can be very efficient at the collection of very fine particles. Filter Press used for filtering liquids by cake filtration mechanism. The PSD plays an important part in the cake formation, cake resistance, and cake characteristics. The filterability of the liquid is determined largely by the size of the particles.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related publications (1)