Concept

Technique de la multiplication en Chine antique

Rod calculus or rod calculation was the mechanical method of algorithmic computation with counting rods in China from the Warring States to Ming dynasty before the counting rods were increasingly replaced by the more convenient and faster abacus. Rod calculus played a key role in the development of Chinese mathematics to its height in Song Dynasty and Yuan Dynasty, culminating in the invention of polynomial equations of up to four unknowns in the work of Zhu Shijie. The basic equipment for carrying out rod calculus is a bundle of counting rods and a counting board. The counting rods are usually made of bamboo sticks, about 12 cm- 15 cm in length, 2mm to 4 mm diameter, sometimes from animal bones, or ivory and jade (for well-heeled merchants). A counting board could be a table top, a wooden board with or without grid, on the floor or on sand. In 1971 Chinese archaeologists unearthed a bundle of well-preserved animal bone counting rods stored in a silk pouch from a tomb in Qian Yang county in Shanxi province, dated back to the first half of Han dynasty (206 BC – 8AD). In 1975 a bundle of bamboo counting rods was unearthed. The use of counting rods for rod calculus flourished in the Warring States, although no archaeological artefacts were found earlier than the Western Han Dynasty (the first half of Han dynasty; however, archaeologists did unearth software artefacts of rod calculus dated back to the Warring States); since the rod calculus software must have gone along with rod calculus hardware, there is no doubt that rod calculus was already flourishing during the Warring States more than 2,200 years ago. The key software required for rod calculus was a simple 45 phrase positional decimal multiplication table used in China since antiquity, called the nine-nine table, which were learned by heart by pupils, merchants, government officials and mathematicians alike. Rod numerals is the only numeric system that uses different placement combination of a single symbol to convey any number or fraction in the Decimal System.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Séances de cours associées (3)
Structures métalliques: Stabilité et Buckling
Explore la stabilité et le flambage des structures métalliques à l'aide de calculs d'abaque et d'exemples de stabilité de cadre.
Théorie du filtre : Réalisation analogique et dimensionnement numérique
Couvre la réalisation analogique des filtres et des méthodes de dimensionnement numérique.
Afficher plus
Concepts associés (6)
Baguettes à calculer
vignette|Représentation de 71824 à l'aide de baguettes à calculer, Yang Hui () - Encyclopédie de Yongle Les baguettes à calculer (chinois : 算筹/算籌, pinyin : suànchóu) sont des bâtonnets d'environ de long utilisés par les Chinois dès le pour effectuer des calculs. Le système s'appuie sur une représentation des nombres selon une numération décimale positionnelle. Ce système précède de plusieurs siècles le système de calcul avec boulier.
Table de multiplication
Une table de multiplication affiche dans les lignes et colonnes le résultat de la multiplication des petits nombres entiers naturels. Le terme usité du Moyen Âge au était « livret » (ce terme est encore courant en Suisse). Le système de numération décimale de position permet d'effectuer la multiplication de deux nombres quelconques à l'aide de la seule connaissance des produits des nombres de 0 à 9 entre eux. C'est à l'école primaire que s'effectue l'apprentissage des tables qui récapitulent tous ces produits.
Mathématiques chinoises
Les mathématiques chinoises sont apparues vers le Les Chinois développèrent de manière autonome des notations pour les grands nombres et les nombres négatifs, les décimaux et une notation positionnelle pour les représenter, le système binaire, l'algèbre, la géométrie et la trigonométrie ; leurs résultats précèdent souvent de plusieurs siècles les résultats analogues des mathématiciens occidentaux. Les mathématiciens chinois n'utilisèrent pas une approche axiomatique, mais plutôt une méthode algorithmique et des techniques algébriques, culminant au avec la création par Zhu Shijie de la méthode des quatre inconnues.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.