In network routing, the control plane is the part of the router architecture that is concerned with drawing the network topology, or the information in a routing table that defines what to do with incoming packets. Control plane functions, such as participating in routing protocols, run in the architectural control element. In most cases, the routing table contains a list of destination addresses and the outgoing interface(s) associated with each. Control plane logic also can identify certain packets to be discarded, as well as preferential treatment of certain packets for which a high quality of service is defined by such mechanisms as differentiated services.
Depending on the specific router implementation, there may be a separate forwarding information base that is populated by the control plane, but used by the high-speed forwarding plane to look up packets and decide how to handle them.
In computing, the control plane is the part of the software that configures and shuts down the data plane. By contrast, the data plane is the part of the software that processes the data requests. The data plane is also sometimes referred to as the forwarding plane.
The distinction has proven useful in the networking field where it originated, as it separates the concerns: the data plane is optimized for speed of processing, and for simplicity and regularity. The control plane is optimized for customizability, handling policies, handling exceptional situations, and in general facilitating and simplifying the data plane processing.
The conceptual separation of the data plane from the control plane has been done for years. An early example is Unix, where the basic file operations are open, close for the control plane and read write for the data plane.
A major function of the control plane is deciding which routes go into the main routing table. "Main" refers to the table that holds the unicast routes that are active. Multicast routing may require an additional routing table for multicast routes. Several routing protocols e.g.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In routing, the forwarding plane, sometimes called the data plane or user plane, defines the part of the router architecture that decides what to do with packets arriving on an inbound interface. Most commonly, it refers to a table in which the router looks up the destination address of the incoming packet and retrieves the information necessary to determine the path from the receiving element, through the internal forwarding fabric of the router, and to the proper outgoing interface(s).
The conventional wisdom is that aggressive networking requirements, such as high packet rates for small messages and microsecond-scale tail latency, are best addressed outside the kernel, in a user-level networking stack. In particular, dataplanes borrow d ...
Realizing a hydrogen economy strongly requires alkaline water electrolysis to achieve large-scale generation of H2, but lacks stable and efficient catalysts. The insufficient active sites in Ni(OH)2 impair the catalytic performance of alkaline HER. Herein, ...
The present invention relates to an apparatus for imaging a page of a book or other similar document comprising: - a table defining a support plane, the book being disposed on the table such that the page to image is substantially parallel to the support p ...