Concept

Comparison of synchronous and asynchronous signalling

Synchronous and asynchronous transmissions are two different methods of transmission synchronization. Synchronous transmissions are synchronized by an external clock, while asynchronous transmissions are synchronized by special signals along the transmission medium. Whenever an electronic device transmits digital (and sometimes analogue) data to another, there must be a certain rhythm established between the two devices, i.e., the receiving device must have some way of, within the context of the fluctuating signal that it's receiving, determining where each unit of data begins and where it ends. There are two ways to synchronize the two ends of the communication. The synchronous signalling methods use two different signals. A pulse on one signal indicates when another bit of information is ready on the other signal. The asynchronous signalling methods use only one signal. The receiver uses transitions on that signal to figure out the transmitter bit rate ("autobaud") and timing, and set a local clock to the proper timing, typically using a phase-locked loop (PLL) to synchronize with the transmission rate. A pulse from the local clock indicates when another bit is ready. In synchronous communications, the stream of data to be transferred is encoded as fluctuating voltage levels in one wire (the 'DATA'), and a periodic pulse of voltage on a separate wire (called the "CLOCK" or "STROBE") which tells the receiver "the current DATA bit is 'valid' at this moment in time". Practically all parallel communications protocols use synchronous transmission. For example, in a computer, address information is transmitted synchronously—the address bits over the address bus, and the read or write strobes of the control bus. A logical one is indicated when there are two transitions in the same time frame as a zero. In the Manchester coding a transition from low to high indicates a one and a transition from high to low indicates a zero. When there are successive ones or zeros, an opposite transition is required on the edge of the time frame to prepare for the next transition and signal.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.