Concept

Hypercubic honeycomb

In geometry, a hypercubic honeycomb is a family of regular honeycombs (tessellations) in n-dimensional spaces with the Schläfli symbols {4,3...3,4} and containing the symmetry of Coxeter group R_n (or B^~_n–1) for n ≥ 3. The tessellation is constructed from 4 n-hypercubes per ridge. The vertex figure is a cross-polytope {3...3,4}. The hypercubic honeycombs are self-dual. Coxeter named this family as δ_n+1 for an n-dimensional honeycomb. A Wythoff construction is a method for constructing a uniform polyhedron or plane tiling. The two general forms of the hypercube honeycombs are the regular form with identical hypercubic facets and one semiregular, with alternating hypercube facets, like a checkerboard. A third form is generated by an expansion operation applied to the regular form, creating facets in place of all lower-dimensional elements. For example, an expanded cubic honeycomb has cubic cells centered on the original cubes, on the original faces, on the original edges, on the original vertices, creating 4 colors of cells around in vertex in 1:3:3:1 counts. The orthotopic honeycombs are a family topologically equivalent to the cubic honeycombs but with lower symmetry, in which each of the three axial directions may have different edge lengths. The facets are hyperrectangles, also called orthotopes; in 2 and 3 dimensions the orthotopes are rectangles and cuboids respectively.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.