The sort-merge join (also known as merge join) is a join algorithm and is used in the implementation of a relational database management system. The basic problem of a join algorithm is to find, for each distinct value of the join attribute, the set of tuples in each relation which display that value. The key idea of the sort-merge algorithm is to first sort the relations by the join attribute, so that interleaved linear scans will encounter these sets at the same time. In practice, the most expensive part of performing a sort-merge join is arranging for both inputs to the algorithm to be presented in sorted order. This can be achieved via an explicit sort operation (often an external sort), or by taking advantage of a pre-existing ordering in one or both of the join relations. The latter condition, called interesting order, can occur because an input to the join might be produced by an index scan of a tree-based index, another merge join, or some other plan operator that happens to produce output sorted on an appropriate key. Interesting orders need not be serendipitous: the optimizer may seek out this possibility and choose a plan that is suboptimal for a specific preceding operation if it yields an interesting order that one or more downstream nodes can exploit. Let's say that we have two relations and and . fits in pages memory and fits in pages memory. So, in the worst case sort-merge join will run in I/Os. In the case that and are not ordered the worst case time cost will contain additional terms of sorting time: , which equals (as linearithmic terms outweigh the linear terms, see Big O notation – Orders of common functions). For simplicity, the algorithm is described in the case of an inner join of two relations left and right. Generalization to other join types is straightforward. The output of the algorithm will contain only rows contained in the left and right relation and duplicates form a Cartesian product. function Sort-Merge Join(left: Relation, right: Relation, comparator: Comparator) { result = new Relation() // Ensure that at least one element is present if (!left.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (11)
CS-101: Advanced information, computation, communication I
Discrete mathematics is a discipline with applications to almost all areas of study. It provides a set of indispensable tools to computer science in particular. This course reviews (familiar) topics a
COM-490: Large-scale data science for real-world data
This hands-on course teaches the tools & methods used by data scientists, from researching solutions to scaling up prototypes to Spark clusters. It exposes the students to the entire data science pipe
CS-300: Data-intensive systems
This course covers the data management system design concepts using a hands-on approach.
Show more
Related lectures (64)
Query Processing: Relational Operations and Models
Discusses query processing models and relational operations, focusing on selections, projections, and joins in data-intensive systems.
Query Operators: Joins and Query Processing Techniques
Discusses advanced query operators, focusing on join techniques and their processing methods in relational databases.
Query Operators Part 2
Covers query processing with relational operations, focusing on different join methods and the impact of buffering.
Show more
Related publications (32)

Efficient Massively Parallel Join Optimization for Large Queries

Anastasia Ailamaki, Bikash Chandra, Srinivas Karthik Venkatesh, Riccardo Mancini, Vasileios Mageirakos

Modern data analytical workloads often need to run queries over a large number of tables. An optimal query plan for such queries is crucial for being able to run these queries within acceptable time bounds. However, with queries involving many tables, find ...
2022

Citizens assemblies and the role of narratives

Sascha Nick, Guido Palazzo

Reducing CO2 emissions, restricting pesticides to protect health and biodiversity, enhancing corporate responsibility: why is Switzerland, one of the more democratic countries of the world, repeatedly failing to create a proper societal dialogue to face to ...
2021

Teachers’ Reasons to Join a Community About Educational Robotics and STEAM: A Swiss Experience

Today we live in a digital society that requires the acquisition of new skills related to computer science, such as computational thinking or coding skills, as well as cross-curricular skills, such as communication, collaboration and creativity. A possible ...
Springer, Cham2021
Show more
Related concepts (1)
Join (SQL)
A join clause in the Structured Query Language (SQL) combines columns from one or more tables into a new table. The operation corresponds to a join operation in relational algebra. Informally, a join stitches two tables and puts on the same row records with matching fields : INNER, LEFT OUTER, RIGHT OUTER, FULL OUTER and CROSS. To explain join types, the rest of this article uses the following tables: Department.DepartmentID is the primary key of the Department table, whereas Employee.DepartmentID is a foreign key.
Related MOOCs (4)
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Geographical Information Systems 1
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Introduction to Geographic Information Systems (part 1)
Organisé en deux parties, ce cours présente les bases théoriques et pratiques des systèmes d’information géographique, ne nécessitant pas de connaissances préalables en informatique. En suivant cette
Show more

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.