Concept

Newton's method in optimization

Summary
In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function F, which are solutions to the equation F (x) = 0. As such, Newton's method can be applied to the derivative f ′ of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article. This is relevant in optimization, which aims to find (global) minima of the function f. The central problem of optimization is minimization of functions. Let us first consider the case of univariate functions, i.e., functions of a single real variable. We will later consider the more general and more practically useful multivariate case. Given a twice differentiable function , we seek to solve the optimization problem Newton's method attempts to solve this problem by constructing a sequence from an initial guess (starting point) that converges towards a minimizer of by using a sequence of second-order Taylor approximations of around the iterates. The second-order Taylor expansion of f around is The next iterate is defined so as to minimize this quadratic approximation in , and setting . If the second derivative is positive, the quadratic approximation is a convex function of , and its minimum can be found by setting the derivative to zero. Since the minimum is achieved for Putting everything together, Newton's method performs the iteration The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below. Note that if happens to a quadratic function, then the exact extremum is found in one step.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.