Targeted temperature management (TTM) previously known as therapeutic hypothermia or protective hypothermia is an active treatment that tries to achieve and maintain a specific body temperature in a person for a specific duration of time in an effort to improve health outcomes during recovery after a period of stopped blood flow to the brain. This is done in an attempt to reduce the risk of tissue injury following lack of blood flow. Periods of poor blood flow may be due to cardiac arrest or the blockage of an artery by a clot as in the case of a stroke.
Targeted temperature management improves survival and brain function following resuscitation from cardiac arrest. Evidence supports its use following certain types of cardiac arrest in which an individual does not regain consciousness. The target temperature is often between 32-34°C. Targeted temperature management following traumatic brain injury is of unclear benefit. While associated with some complications, these are generally mild.
Targeted temperature management is thought to prevent brain injury by several methods, including decreasing the brain's oxygen demand, reducing the production of neurotransmitters like glutamate, as well as reducing free radicals that might damage the brain. Body temperature may be lowered by many means, including cooling blankets, cooling helmets, cooling catheters, ice packs and ice water lavage.
Targeted temperature management may be used in the following conditions:
The 2013 ILCOR and 2010 American Heart Association guidelines support the use of cooling following resuscitation from cardiac arrest. These recommendations were largely based on two trials from 2002 which showed improved survival and brain function when cooled to after cardiac arrest.
However, more recent research suggests that there is no benefit to cooling to when compared with less aggressive cooling only to a near-normal temperature of ; it appears cooling is effective because it prevents fever, a common complication seen after cardiac arrest.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Arrhythmias, also known as cardiac arrhythmias, heart arrhythmias, or dysrhythmias, are irregularities in the heartbeat, including when it is too fast or too slow. A resting heart rate that is too fast – above 100 beats per minute in adults – is called tachycardia, and a resting heart rate that is too slow – below 60 beats per minute – is called bradycardia. Some types of arrhythmias have no symptoms. Symptoms, when present, may include palpitations or feeling a pause between heartbeats.
Reperfusion injury, sometimes called ischemia-reperfusion injury (IRI) or reoxygenation injury, is the tissue damage caused when blood supply returns to tissue (re- + perfusion) after a period of ischemia or lack of oxygen (anoxia or hypoxia). The absence of oxygen and nutrients from blood during the ischemic period creates a condition in which the restoration of circulation results in inflammation and oxidative damage through the induction of oxidative stress rather than (or along with) restoration of normal function.
Brain ischemia is a condition in which there is insufficient bloodflow to the brain to meet metabolic demand. This leads to poor oxygen supply or cerebral hypoxia and thus leads to the death of brain tissue or cerebral infarction/ischemic stroke. It is a sub-type of stroke along with subarachnoid hemorrhage and intracerebral hemorrhage. Ischemia leads to alterations in brain metabolism, reduction in metabolic rates, and energy crisis.
A spinal cord injury (SCI) triggers a cascade of molecular and cellular responses involving inflammatory cell infiltration and cytokine release, apoptosis, demyelination, excitotoxicity, ischemia, and the formation of a fibrotic scar surrounded by an astro ...
EPFL2024
, , ,
Hydraulic fracturing (HF) treatments can form widespread fractures. Understanding their containment at depth is critical, given the positive buoyancy contrast between the fracturing fluid and the surrounding rock, promoting upward growth. We study arrest m ...
American Rock Mechanics Association (ARMA), OnePetro2023
Neonatal hypoxic-ischemic (HI) encephalopathy (HIE) in term newborns is a leading cause of mortality and chronic disability. Hypothermia (HT) is the only clinically available therapeutic intervention; however, its neuroprotective effects are limited. Lacto ...