In computer networking, Teredo is a transition technology that gives full IPv6 connectivity for IPv6-capable hosts that are on the IPv4 Internet but have no native connection to an IPv6 network. Unlike similar protocols such as 6to4, it can perform its function even from behind network address translation (NAT) devices such as home routers.
Teredo operates using a platform independent tunneling protocol that provides IPv6 (Internet Protocol version 6) connectivity by encapsulating IPv6 datagram packets within IPv4 User Datagram Protocol (UDP) packets. Teredo routes these datagrams on the IPv4 Internet and through NAT devices. Teredo nodes elsewhere on the IPv6 network (called Teredo relays) receive the packets, un-encapsulate them, and pass them on.
Teredo is a temporary measure. In the long term, all IPv6 hosts should use native IPv6 connectivity. Teredo should be disabled when native IPv6 connectivity becomes available. Christian Huitema developed Teredo at Microsoft, and the IETF standardized it as RFC 4380. The Teredo server listens on UDP port 3544.
For 6to4, the most common IPv6 over IPv4 tunneling protocol, requires that the tunnel endpoint have a public IPv4 address. However, many hosts currently attach to the IPv4 Internet through one or several NAT devices, usually because of IPv4 address shortage. In such a situation, the only available public IPv4 address is assigned to the NAT device, and the 6to4 tunnel endpoint must be implemented on the NAT device itself. The problem is that many NAT devices currently deployed cannot be upgraded to implement 6to4, for technical or economic reasons.
Teredo alleviates this problem by encapsulating IPv6 packets within UDP/IPv4 datagrams, which most NATs can forward properly. Thus, IPv6-aware hosts behind NATs can serve as Teredo tunnel endpoints even when they don't have a dedicated public IPv4 address. In effect, a host that implements Teredo can gain IPv6 connectivity with no cooperation from the local network environment.
In the long term, all IPv6 hosts should use native IPv6 connectivity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
An Internet Protocol Version 6 address (IPv6 address) is a numeric label that is used to identify and locate a network interface of a computer or a network node participating in a computer network using IPv6. IP addresses are included in the packet header to indicate the source and the destination of each packet. The IP address of the destination is used to make decisions about routing IP packets to other networks. IPv6 is the successor to the first addressing infrastructure of the Internet, Internet Protocol version 4 (IPv4).
A datagram is a basic transfer unit associated with a packet-switched network. Datagrams are typically structured in header and payload sections. Datagrams provide a connectionless communication service across a packet-switched network. The delivery, arrival time, and order of arrival of datagrams need not be guaranteed by the network. Packet switching#History In the early 1970s, the term datagram was created by combining the words data and telegram by the CCITT rapporteur on packet switching, Halvor Bothner-By.
Internet Protocol version 6 (IPv6) is the most recent version of the Internet Protocol (IP), the communications protocol that provides an identification and location system for computers on networks and routes traffic across the Internet. IPv6 was developed by the Internet Engineering Task Force (IETF) to deal with the long-anticipated problem of IPv4 address exhaustion, and was intended to replace IPv4. In December 1998, IPv6 became a Draft Standard for the IETF, which subsequently ratified it as an Internet Standard on 14 July 2017.
In many networks, it is less costly to transmit a packet to any node in a set of neighbors than to one specific neighbor. A well-known instance is with unreliable wireless links, where the probability that at least one node out ofnreceives a packet increas ...
Face is a well-known localized routing protocol for ad hoc and sensor networks which guarantees delivery of the message as long as a path exists between the source and the destination. This is achieved by employing a left/right hand rule to route the messa ...
Datacenter-networking research requires tools to both generate traffic and accurately measure latency and throughput. While hardware-based tools have long existed commercially, they are primarily used to validate ASICs and lack flexibility, e.g. to study n ...