Summary
The Secure Remote Password protocol (SRP) is an augmented password-authenticated key exchange (PAKE) protocol, specifically designed to work around existing patents. Like all PAKE protocols, an eavesdropper or man in the middle cannot obtain enough information to be able to brute-force guess a password or apply a dictionary attack without further interactions with the parties for each guess. Furthermore, being an augmented PAKE protocol, the server does not store password-equivalent data. This means that an attacker who steals the server data cannot masquerade as the client unless they first perform a brute force search for the password. In layman's terms, during SRP (or any other PAKE protocol) authentication, one party (the "client" or "user") demonstrates to another party (the "server") that they know the password, without sending the password itself nor any other information from which the password can be derived. The password never leaves the client and is unknown to the server. Furthermore, the server also needs to know about the password (but not the password itself) in order to instigate the secure connection. This means that the server also authenticates itself to the client which prevents phishing without reliance on the user parsing complex URLs. The only mathematically proven security property of SRP is that it is equivalent to Diffie-Hellman against a passive attacker. Newer PAKEs such as AuCPace and OPAQUE offer stronger guarantees. The SRP protocol has a number of desirable properties: it allows a user to authenticate themselves to a server, it is resistant to dictionary attacks mounted by an eavesdropper, and it does not require a trusted third party. It effectively conveys a zero-knowledge password proof from the user to the server. In revision 6 of the protocol only one password can be guessed per connection attempt. One of the interesting properties of the protocol is that even if one or two of the cryptographic primitives it uses are attacked, it is still secure.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.