Rhizobacteria are root-associated bacteria that can have a detrimental (parasitic varieties), neutral or beneficial effect on plant growth. The name comes from the Greek rhiza, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants (mutualism). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature.
Generally, about 2–5% of rhizosphere bacteria are PGPR. They are an important group of microorganisms used in biofertilizer. Biofertilization accounts for about 65% of the nitrogen supply to crops worldwide. PGPRs have different relationships with different species of host plants. The two major classes of relationships are rhizospheric and endophytic. Rhizospheric relationships consist of the PGPRs that colonize the surface of the root, or superficial intercellular spaces of the host plant, often forming root nodules. The dominant species found in the rhizosphere is a microbe from the genus Azospirillum. Endophytic relationships involve the PGPRs residing and growing within the host plant in the apoplastic space.
Nitrogen fixation is one of the most beneficial processes performed by rhizobacteria. Nitrogen is a vital nutrient to plants and gaseous nitrogen (N2) is not available to them due to the high energy required to break the triple bonds between the two atoms. Rhizobacteria, through nitrogen fixation, are able to convert gaseous nitrogen (N2) to ammonia (NH3) making it an available nutrient to the host plant which can support and enhance plant growth. The host plant provides the bacteria with amino acids so they do not need to assimilate ammonia. The amino acids are then shuttled back to the plant with newly fixed nitrogen. Nitrogenase is an enzyme involved in nitrogen fixation and requires anaerobic conditions. Membranes within root nodules are able to provide these conditions.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Archaea (ɑrˈkiːə ; : archaeon ɑrˈkiːən ) is a domain of single-celled organisms. These microorganisms lack cell nuclei and are therefore prokaryotes. Archaea were initially classified as bacteria, receiving the name archaebacteria (in the Archaebacteria kingdom), but this term has fallen out of use. Archaeal cells have unique properties separating them from the other two domains, Bacteria and Eukaryota. Archaea are further divided into multiple recognized phyla.
To address the problem of insucient wastewater treatment and eutrophication of lakes and rivers, the symbiotic association of microalgae and bacteria has shown great potential and numerous advantages. First, co-cultures can exhibit ecient treatment of dome ...
2020
, , , ,
Understanding the adaptive responses of individual bacterial strains is crucial for microbiome engineering approaches that introduce new functionalities into complex microbiomes, such as xenobiotic compound metabolism for soil bioremediation. Adaptation re ...
Dysbiosis of coral microbiomes results from various biotic and environmental stressors, including interactions with important reef fishes which may act as vectors of opportunistic microbes via deposition of fecal material. Additionally, elevated sea surfac ...