Mohr's circle is a two-dimensional graphical representation of the transformation law for the Cauchy stress tensor.
Mohr's circle is often used in calculations relating to mechanical engineering for materials' strength, geotechnical engineering for strength of soils, and structural engineering for strength of built structures. It is also used for calculating stresses in many planes by reducing them to vertical and horizontal components. These are called principal planes in which principal stresses are calculated; Mohr's circle can also be used to find the principal planes and the principal stresses in a graphical representation, and is one of the easiest ways to do so.
After performing a stress analysis on a material body assumed as a continuum, the components of the Cauchy stress tensor at a particular material point are known with respect to a coordinate system. The Mohr circle is then used to determine graphically the stress components acting on a rotated coordinate system, i.e., acting on a differently oriented plane passing through that point.
The abscissa and ordinate (,) of each point on the circle are the magnitudes of the normal stress and shear stress components, respectively, acting on the rotated coordinate system. In other words, the circle is the locus of points that represent the state of stress on individual planes at all their orientations, where the axes represent the principal axes of the stress element.
19th-century German engineer Karl Culmann was the first to conceive a graphical representation for stresses while considering longitudinal and vertical stresses in horizontal beams during bending. His work inspired fellow German engineer Christian Otto Mohr (the circle's namesake), who extended it to both two- and three-dimensional stresses and developed a failure criterion based on the stress circle.
Alternative graphical methods for the representation of the stress state at a point include the Lamé's stress ellipsoid and Cauchy's stress quadric.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
L'étudiant acquiert les bases de l'analyse des contraintes et déformation des poutres élastiques linéaires soumises à la traction, cisaillement, torsion, flexion; les coefficients d'influence et la m
The course discusses the basic principles of structural mechanics, analyzing the performance of materials and structures against loading and focuses on the stress strain relationships and the effect
Ce cours introduit les bases de la mécanique des structures : calcul des contraintes et déformations provoquées par les forces extérieures et calcul des déformations. Ces enseignements théoriques sont
Applied mechanics is the branch of science concerned with the motion of any substance that can be experienced or perceived by humans without the help of instruments. In short, when mechanics concepts surpass being theoretical and are applied and executed, general mechanics becomes applied mechanics. It is this stark difference that makes applied mechanics an essential understanding for practical everyday life.
Stress–strain analysis (or stress analysis) is an engineering discipline that uses many methods to determine the stresses and strains in materials and structures subjected to forces. In continuum mechanics, stress is a physical quantity that expresses the internal forces that neighboring particles of a continuous material exert on each other, while strain is the measure of the deformation of the material. In simple terms we can define stress as the force of resistance per unit area, offered by a body against deformation.
The field of strength of materials (also called mechanics of materials) typically refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio.
Notre étude Les phares de Bretagne et leurs nouveaux gardiens. Perspectives et horizons pour les phares automatisés avait pour but de présenter la genèse et le développement du balisage des côtes mondiales ainsi que les différentes innovations technologiqu ...
Porous rocks have long been the focus of intense research driven by their importance in our society as host to our most essential resources (oil, gas, water, geothermal energy, etc), yet their rheology remains poorly understood. With increasing depth, poro ...
The Al-Salam Pump Station will be constructed in the framework of Jeddah Storm water Masterplan (JSWM) in Saudi Arabia. The station discharges the incoming flow from the Al-Salam storm tunnel to the Red Sea. Its structure includes a circular deep wet well ...