Concept

Cube-connected cycles

In graph theory, the cube-connected cycles is an undirected cubic graph, formed by replacing each vertex of a hypercube graph by a cycle. It was introduced by for use as a network topology in parallel computing. The cube-connected cycles of order n (denoted CCCn) can be defined as a graph formed from a set of n2n nodes, indexed by pairs of numbers (x, y) where 0 ≤ x < 2n and 0 ≤ y < n. Each such node is connected to three neighbors: (x, (y + 1) mod n), (x, (y − 1) mod n), and (x ⊕ 2y, y), where "⊕" denotes the bitwise exclusive or operation on binary numbers. This graph can also be interpreted as the result of replacing each vertex of an n-dimensional hypercube graph by an n-vertex cycle. The hypercube graph vertices are indexed by the numbers x, and the positions within each cycle by the numbers y. The cube-connected cycles of order n is the Cayley graph of a group that acts on binary words of length n by rotation and flipping bits of the word. The generators used to form this Cayley graph from the group are the group elements that act by rotating the word one position left, rotating it one position right, or flipping its first bit. Because it is a Cayley graph, it is vertex-transitive: there is a symmetry of the graph mapping any vertex to any other vertex. The diameter of the cube-connected cycles of order n is 2n + ⌊n/2⌋ − 2 for any n ≥ 4; the farthest point from (x, y) is (2n − x − 1, (y + n/2) mod n). showed that the crossing number of CCCn is ((1/20) + o(1)) 4n. According to the Lovász conjecture, the cube-connected cycle graph should always contain a Hamiltonian cycle, and this is now known to be true. More generally, although these graphs are not pancyclic, they contain cycles of all but a bounded number of possible even lengths, and when n is odd they also contain many of the possible odd lengths of cycles. Cube-connected cycles were investigated by , who applied these graphs as the interconnection pattern of a network connecting the processors in a parallel computer.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.