The quantum spin Hall state is a state of matter proposed to exist in special, two-dimensional semiconductors that have a quantized spin-Hall conductance and a vanishing charge-Hall conductance. The quantum spin Hall state of matter is the cousin of the integer quantum Hall state, and that does not require the application of a large magnetic field. The quantum spin Hall state does not break charge conservation symmetry and spin- conservation symmetry (in order to have well defined Hall conductances).
The first proposal for the existence of a quantum spin Hall state was developed by Charles Kane and Gene Mele who adapted an earlier model for graphene by F. Duncan M. Haldane which exhibits an integer quantum Hall effect. The Kane and Mele model is two copies of the Haldane model such that the spin up electron exhibits a chiral integer quantum Hall Effect while the spin down electron exhibits an anti-chiral integer quantum Hall effect. A relativistic version of the quantum spin Hall effect was introduced in the 1990s for the numerical simulation of chiral gauge theories; the simplest example consisting of a parity and time reversal symmetric U(1) gauge theory with bulk fermions of opposite sign mass, a massless Dirac surface mode, and bulk currents that carry chirality but not charge (the spin Hall current analogue). Overall the Kane-Mele model has a charge-Hall conductance of exactly zero but a spin-Hall conductance of exactly (in units of ). Independently, a quantum spin Hall model was proposed by Andrei Bernevig and Shoucheng Zhang in an intricate strain architecture which engineers, due to spin-orbit coupling, a magnetic field pointing upwards for spin-up electrons and a magnetic field pointing downwards for spin-down electrons. The main ingredient is the existence of spin–orbit coupling, which can be understood as a momentum-dependent magnetic field coupling to the spin of the electron.
Real experimental systems, however, are far from the idealized picture presented above in which spin-up and spin-down electrons are not coupled.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.