High fidelity (often shortened to Hi-Fi or HiFi) is the high-quality reproduction of sound. It is popular with audiophiles and home audio enthusiasts. Ideally, high-fidelity equipment has inaudible noise and distortion, and a flat (neutral, uncolored) frequency response within the human hearing range.
High fidelity contrasts with the lower-quality "lo-fi" sound produced by inexpensive audio equipment, AM radio, or the inferior quality of sound reproduction that can be heard in recordings made until the late 1940s.
Bell Laboratories began experimenting with a range of recording techniques in the early 1930s. Performances by Leopold Stokowski and the Philadelphia Orchestra were recorded in 1931 and 1932 using telephone lines between the Academy of Music in Philadelphia and the Bell labs in New Jersey. Some multitrack recordings were made on optical sound film, which led to new advances used primarily by MGM (as early as 1937) and Twentieth Century Fox Film Corporation (as early as 1941). RCA Victor began recording performances by several orchestras using optical sound around 1941, resulting in higher-fidelity masters for 78-rpm discs. During the 1930s, Avery Fisher, an amateur violinist, began experimenting with audio design and acoustics. He wanted to make a radio that would sound like he was listening to a live orchestra—that would achieve high fidelity to the original sound. After World War II, Harry F. Olson conducted an experiment whereby test subjects listened to a live orchestra through a hidden variable acoustic filter. The results proved that listeners preferred high-fidelity reproduction, once the noise and distortion introduced by early sound equipment was removed.
Beginning in 1948, several innovations created the conditions that made major improvements of home-audio quality possible:
Reel-to-reel audio tape recording, based on technology taken from Germany after WWII, helped musical artists such as Bing Crosby make and distribute recordings with better fidelity.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
A loudspeaker (commonly referred to as a speaker or speaker driver) is an electroacoustic transducer that converts an electrical audio signal into a corresponding sound. A speaker system, also often simply referred to as a speaker or loudspeaker, comprises one or more such speaker drivers, an enclosure, and electrical connections possibly including a crossover network. The speaker driver can be viewed as a linear motor attached to a diaphragm which couples that motor's movement to motion of air, that is, sound.
The Compact Cassette, also commonly called a cassette tape, audio cassette, or simply tape or cassette, is an analog magnetic tape recording format for audio recording and playback. Invented by Lou Ottens and his team at the Dutch company Philips in 1963, Compact Cassettes come in two forms, either containing content as a prerecorded cassette (Musicassette), or as a fully recordable "blank" cassette. Both forms have two sides and are reversible by the user.
Headphones are a pair of small loudspeaker drivers worn on or around the head over a user's ears. They are electroacoustic transducers, which convert an electrical signal to a corresponding sound. Headphones let a single user listen to an audio source privately, in contrast to a loudspeaker, which emits sound into the open air for anyone nearby to hear. Headphones are also known as earphones or, colloquially, cans. Circumaural ('around the ear') and supra-aural ('over the ear') headphones use a band over the top of the head to hold the speakers in place.
While public speech resources become increasingly available, there is a growing interest to preserve the privacy of the speakers, through methods that anonymize the speaker information from speech while preserving the spoken linguistic content. In this pap ...
ACADEMIC PRESS LTD- ELSEVIER SCIENCE LTD2022
, ,
This article presents a 4-to-5 GHz LC oscillator operating at 4.2K for quantum computing applications. The phase noise (PN) specification of the oscillator is derived based on the control fidelity for a single-qubit operation. To reveal the substantial gap ...
Systematic extraction of locally valid dynamic models from experiments is necessary for controller design and the validation of high fidelity models. This paper describes the extraction of a dynamic model in the form of a transfer function, giving the dyna ...