A DNS zone is a specific portion of the DNS namespace in the Domain Name System (DNS), which a specific organization or administrator manages. A DNS zone is an administrative space allowing more granular control of the DNS components, such as authoritative nameserver. The DNS is broken up into different zones, distinctly managed areas in the DNS namespace. DNS zones are not necessarily physically separated from one another; however, a DNS zone can contain multiple subdomains, and multiple zones can exist on the same server.
The domain namespace of the Internet is organized into a hierarchical layout of subdomains below the DNS root domain. The individual domains of this tree may serve as delegation points for administrative authority and management. However, it is usually desirable to implement fine-grained delegation boundaries so that multiple sub-levels of a domain may be managed independently. Therefore, the domain name space is partitioned into areas (zones) for this purpose. A zone starts at a domain and extends downward in the tree to the leaf nodes or to the top-level of subdomains where other zones start.
A DNS zone is implemented in the configuration system of a domain name server. Historically, it is defined in the , an operating system that starts with the special DNS record type Start of Authority (SOA) and contains all records for the resources described within the zone. This format was originally used by the Berkeley Internet Name Domain Server (BIND) software package and is defined in RFC 1034 and RFC 1035.
Most top-level domain name registry operators offer their namespaces to the public or entities with the mandated geographic or otherwise scoped purpose for registering second-level domains. Similarly, an organization in charge of a lower-level domain may operate its namespace and subdivide its space.
Each registration or allocation of subdomain space obligates the registrant to maintain an administrative and technical infrastructure to manage the responsibility for its zone, including sub-delegation to lower-level domains.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Explores the significance of naming and indirection in computer systems, emphasizing the use of names for flexibility, scalability, and fault tolerance.
A root name server is a name server for the root zone of the Domain Name System (DNS) of the Internet. It directly answers requests for records in the root zone and answers other requests by returning a list of the authoritative name servers for the appropriate top-level domain (TLD). The root name servers are a critical part of the Internet infrastructure because they are the first step in resolving human-readable host names into IP addresses that are used in communication between Internet hosts.
The Internet uses the Domain Name System (DNS) to associate numeric computer IP addresses with human-readable names. The top level of the domain name hierarchy, the DNS root, contains the top-level domains that appear as the suffixes of all Internet domain names. The most widely used (and first) DNS root is administered by the Internet Corporation for Assigned Names and Numbers (ICANN). In addition, several organizations operate alternative DNS roots, often referred to as alt roots.
The domain name arpa is a top-level domain (TLD) in the Domain Name System (DNS) of the Internet. It is used predominantly for the management of technical network infrastructure. Prominent among such functions are the subdomains in-addr.arpa and ip6.arpa, which provide namespaces for reverse DNS lookup of IPv4 and IPv6 addresses, respectively. The name originally was the acronym for the Advanced Research Projects Agency (ARPA), the funding organization in the United States that developed the ARPANET, the precursor of the Internet.
Unrefinement is a tool that allows to perform faster numerical simulations by controlling the level of precision in the specified area. We introduce an algorithm that creates a coarser geometry from an initial regular geometry, which is represented with re ...
ELSEVIER2022
, ,
Virtually every connection to an Internet service is preceded by a DNS lookup. Lookups are performed without any traffic-level protection, thus enabling manipulation, redirection, surveillance, and censorship. To address these issues, large organizations s ...
In the strong scaling limit, the performance of conventional spatial domain decomposition techniques for the parallel solution of PDEs saturates. When sub-domains become small, halo-communication and other overheard come to dominate. A potential path beyon ...