A chronotype is the behavioral manifestation of underlying circadian rhythm's myriad of physical processes. A person's chronotype is the propensity for the individual to sleep at a particular time during a 24-hour period. Eveningness (delayed sleep period; most active and alert in the evening) and morningness (advanced sleep period; most active and alert in the morning) are the two extremes with most individuals having some flexibility in the timing of their sleep period. However, across development there are changes in the propensity of the sleep period with pre-pubescent children preferring an advanced sleep period, adolescents preferring a delayed sleep period and many elderly preferring an advanced sleep period.
The causes and regulation of chronotypes, including developmental change, individual propensity for a specific chronotype, and flexible versus fixed chronotypes have yet to be determined. However, research is beginning to shed light on these questions, such as the relationship between age and chronotype. There are candidate genes (called CLOCK genes) that exist in most cells in the body and brain, referred to as the circadian system that regulate physiological phenomena (hormone levels, metabolic function, body temperature, cognitive faculties, and sleeping). With the exception of the most extreme and rigid chronotypes, regulation is likely due to gene-environment interactions. Important environmental cues (zeitgebers) include light, feeding, social behavior, and work and school schedules. Additional research has proposed an evolutionary link between chronotype and nighttime vigilance in ancestral societies.
Humans are normally diurnal creatures, that is to say they are active in the daytime. As with most other diurnal animals, human activity-rest patterns are endogenously controlled by biological clocks with a circadian (~24-hour) period. Chronotypes have also been investigated in other species, such as fruit flies and mice.
Normal variation in chronotype encompasses sleep–wake cycles that are two to three hours later in evening types than morning types.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Light effects on circadian rhythm are the effects that light has on circadian rhythm. Most animals and other organisms have "built-in clocks" in their brains that regulate the timing of biological processes and daily behavior. These "clocks" are known as circadian rhythms. They allow maintenance of these processes and behaviors relative to the 24-hour day/night cycle in nature. Although these rhythms are maintained by the individual organisms, their length does vary somewhat individually.
A zeitgeber (ˈtsaɪtˌgeɪbər) is any external or environmental cue that entrains or synchronizes an organism's biological rhythms, usually naturally occurring and serving to entrain to the Earth's 24-hour light/dark and 12-month cycles. The term Zeitgeber (ˈtsaɪtˌɡeːbɐ; time giver) was first used by Jürgen Aschoff, one of the founders of the field of chronobiology. His work demonstrated the existence of endogenous (internal) biological clocks, which synchronize biological rhythms.
In the study of chronobiology, entrainment occurs when rhythmic physiological or behavioral events match their period to that of an environmental oscillation. It is ultimately the interaction between circadian rhythms and the environment. A central example is the entrainment of circadian rhythms to the daily light–dark cycle, which ultimately is determined by the Earth's rotation. Exposure to certain environmental stimuli will cue a phase shift, and abrupt change in the timing of the rhythm.
Explores the health effects of artificial light on living organisms and the principles of fluorescence guided surgery, along with the mechanisms and history of bright light therapy for psychiatric disorders.
Designing architectural façades that allow sufficient daylight to create visually comfortable and pleasantenvironments is a challenging aspect of building design. It requires accounting for visual comfort anddiscomfort glare risks and understanding the fac ...
EPFL2023
, , ,
The synchronization of circadian clock depends on a central pacemaker located in the suprachiasmatic nuclei. However, the potential feedback of peripheral signals on the central clock remains poorly characterized. To explore whether peripheral organ circad ...
Wearable biosensors and smartphone applications can measure physiological variables over multiple days in free-living conditions. We measure food and drink ingestion, glucose dynamics, physical activity, heart rate (HR), and heart rate variability (HRV) in ...