In thermodynamics, the enthalpy of mixing (also heat of mixing and excess enthalpy) is the enthalpy liberated or absorbed from a substance upon mixing. When a substance or compound is combined with any other substance or compound, the enthalpy of mixing is the consequence of the new interactions between the two substances or compounds. This enthalpy, if released exothermically, can in an extreme case cause an explosion.
Enthalpy of mixing can often be ignored in calculations for mixtures where other heat terms exist, or in cases where the mixture is ideal. The sign convention is the same as for enthalpy of reaction: when the enthalpy of mixing is positive, mixing is endothermic, while negative enthalpy of mixing signifies exothermic mixing. In ideal mixtures, the enthalpy of mixing is null. In non-ideal mixtures, the thermodynamic activity of each component is different from its concentration by multiplying with the activity coefficient.
One approximation for calculating the heat of mixing is Flory–Huggins solution theory for polymer solutions.
For a liquid, enthalpy of mixing can be defined as follows
Where:
H(mixture) is the total enthalpy of the system after mixing
ΔHmix is the enthalpy of mixing
xi is the mole fraction of component i in the system
Hi is the enthalpy of pure i
Enthalpy of mixing can also be defined using Gibbs free energy of mixing
However, Gibbs free energy of mixing and entropy of mixing tend to be more difficult to determine experimentally. As such, enthalpy of mixing tends to be determined experimentally in order to calculate entropy of mixing, rather than the reverse.
Enthalpy of mixing is defined exclusively for the continuum regime, which excludes molecular-scale effects (However, first-principles calculations have been made for some metal-alloy systems such as Al-Co-Cr or β-Ti).
When two substances are mixed the resulting enthalpy is not an addition of the pure component enthalpies, unless the substances form an ideal mixture. The interactions between each set of molecules determines the final change in enthalpy.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
This course establishes the basic concepts of thermodynamics and defines the main state functions. The concepts are then applied to the study of phase diagrams of various systems.
This course covers the metallurgy, processing and properties of modern high-performance metals and alloys (e.g. advanced steels, Ni-base, Ti-base, High Entropy Alloys etc.). In addition, the principle
The student has a basic understanding of the physical and physicochemical principles which result from the chainlike structure of synthetic macromolecules. The student can predict major characteristic
In thermodynamics, an activity coefficient is a factor used to account for deviation of a mixture of chemical substances from ideal behaviour. In an ideal mixture, the microscopic interactions between each pair of chemical species are the same (or macroscopically equivalent, the enthalpy change of solution and volume variation in mixing is zero) and, as a result, properties of the mixtures can be expressed directly in terms of simple concentrations or partial pressures of the substances present e.g. Raoult's law.
In thermodynamics, a partial molar property is a quantity which describes the variation of an extensive property of a solution or mixture with changes in the molar composition of the mixture at constant temperature and pressure. It is the partial derivative of the extensive property with respect to the amount (number of moles) of the component of interest. Every extensive property of a mixture has a corresponding partial molar property. The partial molar volume is broadly understood as the contribution that a component of a mixture makes to the overall volume of the solution.
In chemistry, a regular solution is a solution whose entropy of mixing is equal to that of an ideal solution with the same composition, but is non-ideal due to a nonzero enthalpy of mixing. Such a solution is formed by random mixing of components of similar molar volume and without strong specific interactions, and its behavior diverges from that of an ideal solution by showing phase separation at intermediate compositions and temperatures (a miscibility gap).
Sensors capable of detecting and classifying volatile organic compounds (VOC) have been gaining more attention by the advent of internet-of-things (IoT) enabled devices and integration of various sensing elements into hand-held and portable devices. The re ...
EPFL2021
,
Liquid-liquid microfluidic systems rely on the intricate control over the fluid properties of either miscible or immiscible mixtures. Herein, we report on the use of partially miscible binary liquid mixtures that lend their microfluidic properties from a h ...
ROYAL SOC CHEMISTRY2020
, , , ,
Our understanding of the dynamics of charge transfer between solid surfaces and liquid electrolytes has been hampered by the difficulties in obtaining interface, charge, and solvent-specific information at both high spatial and temporal resolution. Here, w ...