A halogen bond occurs when there is evidence of a net attractive interaction between an electrophilic region associated with a halogen atom in a molecular entity and a nucleophilic region in another, or the same, molecular entity. Like a hydrogen bond, the result is not a formal chemical bond, but rather a strong electrostatic attraction. Mathematically, the interaction can be decomposed in two terms: one describing an electrostatic, orbital-mixing charge-transfer and another describing electron-cloud dispersion. Halogen bonds find application in supramolecular chemistry; drug design and biochemistry; crystal engineering and liquid crystals; and organic catalysis. Halogen bonds occur when a halogen atom is electrostatically attracted to a partial negative charge. Necessarily, the atom must be covalently bonded in an antipodal σ-bond; the electron concentration associated with that bond leaves a positively charged "hole" on the other side. Although all halogens can theoretically participate in halogen bonds, the σ-hole shrinks if the electron cloud in question polarizes poorly or the halogen is so electronegative as to polarize the associated σ-bond. Consequently halogen-bond propensity follows the trend F < Cl < Br < I. There is no clear distinction between halogen bonds and expanded octet partial bonds; what is superficially a halogen bond may well turn out to be a full bond in an unexpectedly relevant resonance structure. A halogen bond is almost collinear with the halogen atom's other, conventional bond, but the geometry of the electron-charge donor may be much more complex. Multi-electron donors such as ethers and amines prefer halogen bonds collinear with the lone pair and donor nucleus. Pyridine derivatives tend to donate halogen bonds approximately coplanar with the ring, and the two CN \cdots X angles are about 120°. Carbonyl, thiocarbonyl-, and selenocarbonyl groups, with a trigonal planar geometry around the Lewis donor atom, can accept one or two halogen bonds.

About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.

Graph Chatbot

Chat with Graph Search

Ask any question about EPFL courses, lectures, exercises, research, news, etc. or try the example questions below.

DISCLAIMER: The Graph Chatbot is not programmed to provide explicit or categorical answers to your questions. Rather, it transforms your questions into API requests that are distributed across the various IT services officially administered by EPFL. Its purpose is solely to collect and recommend relevant references to content that you can explore to help you answer your questions.