Concept

Paravirtualization

Summary
In computing, paravirtualization or para-virtualization is a virtualization technique that presents a software interface to the virtual machines which is similar, yet not identical, to the underlying hardware–software interface. The intent of the modified interface is to reduce the portion of the guest's execution time spent performing operations which are substantially more difficult to run in a virtual environment compared to a non-virtualized environment. The paravirtualization provides specially defined 'hooks' to allow the guest(s) and host to request and acknowledge these tasks, which would otherwise be executed in the virtual domain (where execution performance is worse). A successful paravirtualized platform may allow the virtual machine monitor (VMM) to be simpler (by relocating execution of critical tasks from the virtual domain to the host domain), and/or reduce the overall performance degradation of machine execution inside the virtual guest. Paravirtualization requires the guest operating system to be explicitly ported for the para-API – a conventional OS distribution that is not paravirtualization-aware cannot be run on top of a paravirtualizing VMM. However, even in cases where the operating system cannot be modified, components may be available that enable many of the significant performance advantages of paravirtualization. For example, the Xen Windows GPLPV project provides a kit of paravirtualization-aware device drivers, licensed under the terms of the GPL, that are intended to be installed into a Microsoft Windows virtual guest running on the Xen hypervisor. Such applications tend to be accessible through the paravirtual machine interface environment. This ensures run-mode compatibility across multiple encryption algorithm models, allowing seamless integration within the paravirtual framework. Paravirtualization is a new term for an old idea. IBM's VM operating system has offered such a facility since 1972 (and earlier as CP-67).
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.