In mathematics, the conjugate gradient method is an algorithm for the numerical solution of particular systems of linear equations, namely those whose matrix is positive-definite. The conjugate gradient method is often implemented as an iterative algorithm, applicable to sparse systems that are too large to be handled by a direct implementation or other direct methods such as the Cholesky decomposition. Large sparse systems often arise when numerically solving partial differential equations or optimization problems.
The conjugate gradient method can also be used to solve unconstrained optimization problems such as energy minimization. It is commonly attributed to Magnus Hestenes and Eduard Stiefel, who programmed it on the Z4, and extensively researched it.
The biconjugate gradient method provides a generalization to non-symmetric matrices. Various nonlinear conjugate gradient methods seek minima of nonlinear optimization problems.
Suppose we want to solve the system of linear equations
for the vector , where the known matrix is symmetric (i.e., AT = A), positive-definite (i.e. xTAx > 0 for all non-zero vectors in Rn), and real, and is known as well. We denote the unique solution of this system by .
Derivation of the conjugate gradient method
The conjugate gradient method can be derived from several different perspectives, including specialization of the conjugate direction method for optimization, and variation of the Arnoldi/Lanczos iteration for eigenvalue problems. Despite differences in their approaches, these derivations share a common topic—proving the orthogonality of the residuals and conjugacy of the search directions. These two properties are crucial to developing the well-known succinct formulation of the method.
We say that two non-zero vectors u and v are conjugate (with respect to ) if
Since is symmetric and positive-definite, the left-hand side defines an inner product
Two vectors are conjugate if and only if they are orthogonal with respect to this inner product.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In calculus, Newton's method (also called Newton–Raphson) is an iterative method for finding the roots of a differentiable function F, which are solutions to the equation F (x) = 0. As such, Newton's method can be applied to the derivative f ′ of a twice-differentiable function f to find the roots of the derivative (solutions to f ′(x) = 0), also known as the critical points of f. These solutions may be minima, maxima, or saddle points; see section "Several variables" in Critical point (mathematics) and also section "Geometric interpretation" in this article.
In mathematics, preconditioning is the application of a transformation, called the preconditioner, that conditions a given problem into a form that is more suitable for numerical solving methods. Preconditioning is typically related to reducing a condition number of the problem. The preconditioned problem is then usually solved by an iterative method. In linear algebra and numerical analysis, a preconditioner of a matrix is a matrix such that has a smaller condition number than .
The finite element method (FEM) is a popular method for numerically solving differential equations arising in engineering and mathematical modeling. Typical problem areas of interest include the traditional fields of structural analysis, heat transfer, fluid flow, mass transport, and electromagnetic potential. The FEM is a general numerical method for solving partial differential equations in two or three space variables (i.e., some boundary value problems).
The students will acquire a solid knowledge on the processes necessary to design, write and use scientific software. Software design techniques will be used to program a multi-usage particles code, ai
The student will learn state-of-the-art algorithms for solving differential equations. The analysis and implementation of these algorithms will be discussed in some detail.
This course provides an overview of advanced techniques for solving large-scale linear algebra problems, as they typically arise in applications. A central goal of this course is to give the ability t
Learn to optimize on smooth, nonlinear spaces: Join us to build your foundations (starting at "what is a manifold?") and confidently implement your first algorithm (Riemannian gradient descent).
Introduction to linear optimization, duality and the simplex algorithm.
Introduction to linear optimization, duality and the simplex algorithm.
This work is concerned with the computation of the action of a matrix function f(A), such as the matrix exponential or the matrix square root, on a vector b. For a general matrix A, this can be done by computing the compression of A onto a suitable Krylov ...
We present a combination technique based on mixed differences of both spatial approximations and quadrature formulae for the stochastic variables to solve efficiently a class of optimal control problems (OCPs) constrained by random partial differential equ ...
For a high dimensional problem, a randomized Gram-Schmidt (RGS) algorithm is beneficial in computational costs as well as numerical stability. We apply this dimension reduction technique by random sketching to Krylov subspace methods, e.g. to the generaliz ...