vignette|Épure de Cremona pour un treillis à 15 poutres, 9 nœuds et 9 forces extérieures. L'épure de Cremona, du nom de son inventeur, Luigi Cremona, est une méthode de statique graphique utilisée pour le calcul des efforts dans un treillis (système triangulé, assemblage de poutres). On trouve fréquemment des orthographes de ce nom avec un accent aigu et éventuellement une minuscule initiale (Crémona, crémona). La structure est divisée en régions, qui sont délimitées par des poutres ou les demi-droites portant les forces extérieures à la structure. Dans le diagramme — épure de Cremona, ou Cremona tout court —, les régions sont représentées par un point. Sur cette épure, les points représentant deux régions contiguës sont reliés par un segment ayant la direction de la poutre ou de la force qui les sépare. Les différentes contraintes s'exerçant autour d'une région permettent de situer le point la représentant par construction géométrique (intersection de droites). Les segments sont en fait les forces s'exerçant sur les poutres représentées à l'échelle. Par rapport au diagramme ci-contre, on a : force : segment 1–3 ; force : segment 3–2 ; force : segment 2–1 ; forces de traction dans l'élément A–B : segment 3–4 ; forces de compression dans l'élément B–C : segment 2–4 ; forces de compression dans l'élément A–C : segment 1–4. En connaissant le module des forces extérieures ( est donné, et sont calculées par la statique), la construction permet de mesurer, ou de calculer par trigonométrie, les forces de traction ou de compression dans les poutres à partir des seules orientations des poutres. On peut ainsi vérifier que les poutres résistent à la traction ou au flambage. La structure est en équilibre. Cela signifie qu'à chaque nœud, la somme des forces est nulle. On peut donc tracer un polygone en mettant les forces bout à bout. Ce polygone des forces est encore appelé « polygone dynamique » ou simplement « le dynamique » ; dans l'exemple présent, il s'agit de triangles puisqu'il n'y a que trois forces à chaque nœud.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.