In mathematics, Pythagorean addition is a binary operation on the real numbers that computes the length of the hypotenuse of a right triangle, given its two sides. According to the Pythagorean theorem, for a triangle with sides and , this length can be calculated as
where denotes the Pythagorean addition operation.
This operation can be used in the conversion of Cartesian coordinates to polar coordinates. It also provides a simple notation and terminology for some formulas when its summands are complicated; for example, the energy-momentum relation in physics becomes
It is implemented in many programming libraries as the hypot function, in a way designed to avoid errors arising due to limited-precision calculations performed on computers. In its applications to signal processing and propagation of measurement uncertainty, the same operation is also called addition in quadrature.
Pythagorean addition (and its implementation as the hypot function) is often used together with the atan2 function to convert from Cartesian coordinates to polar coordinates :
If measurements have independent errors respectively, the quadrature method gives the overall error,
whereas the upper limit of the overall error is
if the errors were not independent.
This is equivalent of finding the magnitude of the resultant of adding orthogonal vectors, each with magnitude equal to the uncertainty, using the Pythagorean theorem.
In signal processing, addition in quadrature is used to find the overall noise from independent sources of noise. For example, if an gives six digital numbers of shot noise, three of dark current noise and two of Johnson–Nyquist noise under a specific condition, the overall noise is
digital numbers, showing the dominance of larger sources of noise.
The root mean square of a finite set of numbers is just their Pythagorean sum, normalized to form a generalized mean by dividing by .
The operation is associative and commutative, and
This means that the real numbers under form a commutative semigroup.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle. It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides. The theorem can be written as an equation relating the lengths of the sides a, b and the hypotenuse c, sometimes called the Pythagorean equation: The theorem is named for the Greek philosopher Pythagoras, born around 570 BC.
In geometry, a hypotenuse is the longest side of a right-angled triangle, the side opposite the right angle. The length of the hypotenuse can be found using the Pythagorean theorem, which states that the square of the length of the hypotenuse equals the sum of the squares of the lengths of the other two sides. For example, if one of the other sides has a length of 3 (when squared, 9) and the other has a length of 4 (when squared, 16), then their squares add up to 25. The length of the hypotenuse is the square root of 25, that is, 5.
In mathematics, the Euclidean distance between two points in Euclidean space is the length of a line segment between the two points. It can be calculated from the Cartesian coordinates of the points using the Pythagorean theorem, therefore occasionally being called the Pythagorean distance. These names come from the ancient Greek mathematicians Euclid and Pythagoras, although Euclid did not represent distances as numbers, and the connection from the Pythagorean theorem to distance calculation was not made until the 18th century.
Explores orthogonality, vector norms, and subspaces in Euclidean space, including determining orthogonal complements and properties of subspaces and matrices.
A fast algorithm is developed for the directional correlation of scalar band-limited signals and band-limited steerable filters on the sphere. The asymptotic complexity associated to it through simple quadrature is of order O(L^5), where 2L stands for the ...