In molecular biology, a displacement loop or D-loop is a DNA structure where the two strands of a double-stranded DNA molecule are separated for a stretch and held apart by a third strand of DNA. An R-loop is similar to a D-loop, but in this case the third strand is RNA rather than DNA. The third strand has a base sequence which is complementary to one of the main strands and pairs with it, thus displacing the other complementary main strand in the region. Within that region the structure is thus a form of triple-stranded DNA. A diagram in the paper introducing the term illustrated the D-loop with a shape resembling a capital "D", where the displaced strand formed the loop of the "D".
D-loops occur in a number of particular situations, including in DNA repair, in telomeres, and as a semi-stable structure in mitochondrial circular DNA molecules.
Researchers at Caltech discovered in 1971 that the circular mitochondrial DNA from growing cells included a short segment of three strands which they called a displacement loop.
They found the third strand was a replicated segment of the heavy strand (or H-strand) of the molecule, which it displaced, and was hydrogen bonded to the light strand (or L-strand). Since then, it has been shown that the third strand is the initial segment generated by a replication of the heavy strand that has been arrested shortly after initiation and is often maintained for some period in that state.
The D-loop occurs in the main non-coding area of the mitochondrial DNA molecule, a segment called the control region or D-loop region.
Replication of the mitochondrial DNA can occur in two different ways, both starting in the D-loop region.
One way continues replication of the heavy strand through a substantial part (e.g. two-thirds) of the circular molecule, and then replication of the light strand begins. The more recently reported mode starts at a different origin within the D-loop region and uses coupled-strand replication with simultaneous synthesis of both strands.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
The course covers in detail molecular mechanisms of cancer development with emphasis on cell cycle control, genome stability, oncogenes and tumor suppressor genes.
Deinococcus radiodurans is an extremophilic bacterium and one of the most radiation-resistant organisms known. It can survive cold, dehydration, vacuum, and acid, and therefore is known as a polyextremophile. It has been listed as the world's toughest known bacterium in The Guinness Book Of World Records. The name Deinococcus radiodurans derives from the Ancient Greek δεινός () and κόκκος () meaning "terrible grain/berry" and the Latin radius and durare, meaning "radiation surviving".
A nuclease (also archaically known as nucleodepolymerase or polynucleotidase) is an enzyme capable of cleaving the phosphodiester bonds between nucleotides of nucleic acids. Nucleases variously effect single and double stranded breaks in their target molecules. In living organisms, they are essential machinery for many aspects of DNA repair. Defects in certain nucleases can cause genetic instability or immunodeficiency. Nucleases are also extensively used in molecular cloning.
The nucleoid (meaning nucleus-like) is an irregularly shaped region within the prokaryotic cell that contains all or most of the genetic material. The chromosome of a typical prokaryote is circular, and its length is very large compared to the cell dimensions, so it needs to be compacted in order to fit. In contrast to the nucleus of a eukaryotic cell, it is not surrounded by a nuclear membrane. Instead, the nucleoid forms by condensation and functional arrangement with the help of chromosomal architectural proteins and RNA molecules as well as DNA supercoiling.
Although telomeres are essential for chromosome stability, they represent fragile structures in our genome. Telomere shortening occurs during aging in cells lacking telomerase due to the end replication problem. In addition, recent work uncovered that the ...
COLD SPRING HARBOR LAB PRESS, PUBLICATIONS DEPT2022
Telomeres are nucleoprotein structures at the ends of linear chromosomes, being essential for the maintenance of genomic integrity. Telomeres have a unique structure which distinguishes chromosome termini from DNA damage sites. Shelterin complexes are the ...
Telomeres are the nucleoprotein structures found at the ends of linear chromosomes. They ensure that the termini of chromosomes are not inappropriately recognized as sites of DNA damage, and are therefore crucial for genome stability. In spite of the heter ...