In computer science, a radix tree (also radix trie or compact prefix tree or compressed trie) is a data structure that represents a space-optimized trie (prefix tree) in which each node that is the only child is merged with its parent. The result is that the number of children of every internal node is at most the radix r of the radix tree, where r is a positive integer and a power x of 2, having x ≥ 1. Unlike regular trees, edges can be labeled with sequences of elements as well as single elements. This makes radix trees much more efficient for small sets (especially if the strings are long) and for sets of strings that share long prefixes.
Unlike regular trees (where whole keys are compared en masse from their beginning up to the point of inequality), the key at each node is compared chunk-of-bits by chunk-of-bits, where the quantity of bits in that chunk at that node is the radix r of the radix trie. When r is 2, the radix trie is binary (i.e., compare that node's 1-bit portion of the key), which minimizes sparseness at the expense of maximizing trie depth—i.e., maximizing up to conflation of nondiverging bit-strings in the key. When r ≥ 4 is a power of 2, then the radix trie is an r-ary trie, which lessens the depth of the radix trie at the expense of potential sparseness.
As an optimization, edge labels can be stored in constant size by using two pointers to a string (for the first and last elements).
Note that although the examples in this article show strings as sequences of characters, the type of the string elements can be chosen arbitrarily; for example, as a bit or byte of the string representation when using multibyte character encodings or Unicode.
Radix trees are useful for constructing associative arrays with keys that can be expressed as strings. They find particular application in the area of IP routing, where the ability to contain large ranges of values with a few exceptions is particularly suited to the hierarchical organization of IP addresses. They are also used for inverted indexes of text documents in information retrieval.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
In computer science, an associative array, map, symbol table, or dictionary is an abstract data type that stores a collection of (key, value) pairs, such that each possible key appears at most once in the collection. In mathematical terms, an associative array is a function with finite domain. It supports 'lookup', 'remove', and 'insert' operations. The dictionary problem is the classic problem of designing efficient data structures that implement associative arrays.
Data replication is an indispensable service for mobile ad hoc networks and it helps to increase data availability, reduce communication overhead, achieve fault-tolerance and load balancing. Our scalable and reactive data replication framework SCALAR opera ...
Ieee Service Center, 445 Hoes Lane, Po Box 1331, Piscataway, Nj 08855-1331 Usa2009
,
Index join performance is determined by the efficiency of the lookup operation on the involved index. Although database indexes are highly optimized to leverage processor caches, main memory accesses inevitably increase lookup runtime when the index outsiz ...
VLDB Endowment Inc.2017
, ,
In-memory databases rely on pointer-intensive data structures to quickly locate data in memory. A single lookup operation in such data structures often exhibits long-latency memory stalls due to dependent pointer dereferences. Hiding the memory latency by ...