Frost heaving (or a frost heave) is an upwards swelling of soil during freezing conditions caused by an increasing presence of ice as it grows towards the surface, upwards from the depth in the soil where freezing temperatures have penetrated into the soil (the freezing front or freezing boundary). Ice growth requires a water supply that delivers water to the freezing front via capillary action in certain soils. The weight of overlying soil restrains vertical growth of the ice and can promote the formation of lens-shaped areas of ice within the soil. Yet the force of one or more growing ice lenses is sufficient to lift a layer of soil, as much as or more. The soil through which water passes to feed the formation of ice lenses must be sufficiently porous to allow capillary action, yet not so porous as to break capillary continuity. Such soil is referred to as "frost susceptible". The growth of ice lenses continually consumes the rising water at the freezing front. Differential frost heaving can crack road surfaces—contributing to springtime pothole formation—and damage building foundations. Frost heaves may occur in mechanically refrigerated cold-storage buildings and ice rinks.
Needle ice is essentially frost heaving that occurs at the beginning of the freezing season, before the freezing front has penetrated very far into the soil and there is no soil overburden to lift as a frost heave.
Urban Hjärne described frost effects in soil in 1694.
By 1930, Stephen Taber, head of the Department of Geology at the University of South Carolina, had disproved the hypothesis that frost heaving results from molar volume expansion with freezing of water already present in the soil prior to the onset of subzero temperatures, i.e. with little contribution from the migration of water within the soil.
Since the molar volume of water expands by about 9% as it changes phase from water to ice at its bulk freezing point, 9% would be the maximum expansion possible owing to molar volume expansion, and even then only if the ice were rigidly constrained laterally in the soil so that the entire volume expansion had to occur vertically.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Palsas are peat mounds with a permanently frozen peat and mineral soil core. They are a typical phenomenon in the polar and subpolar zone of discontinuous permafrost. One of their characteristics is having steep slopes that rises above the mire surface. This leads to the accumulation of large amounts of snow around them. The summits of the palsas are free of snow even in winter, because the wind carries the snow and deposits on the slopes and elsewhere on the flat mire surface.
Periglaciation (adjective: "periglacial", referring to places at the edges of glacial areas) describes geomorphic processes that result from seasonal thawing and freezing, very often in areas of permafrost. The meltwater may refreeze in ice wedges and other structures. "Periglacial" originally suggested an environment located on the margin of past glaciers. However, freeze and thaw cycles influence landscapes also outside areas of past glaciation. Therefore, periglacial environments are anywhere when freezing and thawing modify the landscape in a significant manner.
Ice lenses are bodies of ice formed when moisture, diffused within soil or rock, accumulates in a localized zone. The ice initially accumulates within small collocated pores or pre-existing crack, and, as long as the conditions remain favorable, continues to collect in the ice layer or ice lens, wedging the soil or rock apart. Ice lenses grow parallel to the surface and several centimeters to several decimeters (inches to feet) deep in the soil or rock. Studies from 1990 have demonstrated that rock fracture by ice segregation (i.
Heterogeneous ice nucleation impacts the hydrological cycle and climate through affecting cloud microphysical state and radiative properties. Despite decades of research, a quantitative description and understanding of heterogeneous ice nucleation remains ...
This paper presents a combined experimental-modeling effort to interpret the coupled thermo-hydro-mechanical behaviors of the freezing soil, where an unconfined, fully saturated clay is frozen due to a temperature gradient. By leveraging the rich experimen ...
Nanoporous single-layer graphene (N-SLG) membranes, owing to their single-atom thinness, have the potential to exceed the permeance and selectivity limits of gas separation membranes. However, two key issues in the top-down N-SLG synthesis need to be addre ...