Germplasm are genetic resources such as seeds, tissues, and DNA sequences that are maintained for the purpose of animal and plant breeding, conservation efforts, agriculture, and other research uses. These resources may take the form of seed collections stored in seed banks, trees growing in nurseries, animal breeding lines maintained in animal breeding programs or gene banks. Germplasm collections can range from collections of wild species to elite, domesticated breeding lines that have undergone extensive human selection. Germplasm collection is important for the maintenance of biological diversity, food security, and conservation efforts.
In the United States, germplasm resources are regulated by the National Genetic Resources Program (NGRP), created by the U.S. congress in 1990. In addition the web server The Germplasm Resources Information Network (GRIN) provides information about germplasms as they pertain to agriculture production.
In the United States, germplasm resources are regulated by the National Genetic Resources Program (NGRP), created by the U.S. congress in 1990. In addition the web server The Germplasm Resources Information Network (GRIN) provides information about germplasms as they pertain to agriculture production.
Specifically for plants, there is the U.S. National Plant Germplasm System (NPGS) which holds > 450,000 accessions with 10,000 species of the 85 most commonly grown crops. Many accessions held are international species, and NPGS distributes germplasm resources internationally.
As genetic information moves largely online there is a transition in germplasm information from a physical location (seed banks, cryopreserving) to online platforms containing genetic sequences. In addition there are issues in the collection germplasm information and where they are shared. Historically some germplasm information had been collected in developing countries and then shared to researchers who then sell the donor country the original germplasm that they altered.
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Plant genetic resources describe the variability within plants that comes from human and natural selection over millennia. Their intrinsic value mainly concerns agricultural crops (crop biodiversity). According to the 1983 revised International Undertaking on Plant Genetic Resources for Food and Agriculture of the Food and Agriculture Organization (FAO), plant genetic resources are defined as the entire generative and vegetative reproductive material of species with economical and/or social value, especially for the agriculture of the present and the future, with special emphasis on nutritional plants.
Genetic resources are genetic material of actual or potential value, where genetic material means any material of plant, animal, microbial or other origin containing functional units of heredity. Genetic resources is one of the three levels of biodiversity defined by the Convention on Biological Diversity in Rio, 1992. Animal genetic resources for food and agriculture Forest genetic resources Germplasm, genetic resources that are preserved for various purposes such as breeding, preservation, and research Pl
Gene banks are a type of biorepository that preserves genetic material. For plants, this is done by in vitro storage, freezing cuttings from the plant, or stocking the seeds (e.g. in a seedbank). For animals, this is done by the freezing of sperm and eggs in zoological freezers until further need. With corals, fragments are taken and stored in water tanks under controlled conditions. Genetic material in a 'gene bank' is preserved in a variety of ways, such as freezing at -196 °C in liquid nitrogen, being placed in artificial ecosystems, or put in controlled nutrient media.
Microcomputed tomography (mu CT) is a nondestructive X-ray imaging method used in plant physiology to visualize in situ plant tissues that enables assessments of embolized xylem vessels. Whereas evidence for X-ray-induced cellular damage has been reported, ...