En mathématiques, et plus précisément en logique mathématique, le forcing est une technique inventée par Paul Cohen pour prouver des résultats de cohérence et d'indépendance en théorie des ensembles. Elle a été utilisée pour la première fois en 1962 pour prouver l'indépendance de l'hypothèse du continu vis-à-vis de la théorie ZFC. Combinée avec la technique des modèles de permutation de Fraenkel-Mostowski-Specker, elle a permis également d'établir l'indépendance de l'axiome du choix relativement à ZF. Le forcing a été notablement remanié et simplifié dans les années 1960 et s'est révélé être une technique extrêmement puissante, à la fois en théorie des ensembles et dans d'autres branches de la logique mathématique, comme la théorie des modèles ou la logique intuitionniste. Le forcing est équivalent à la méthode des , qui est parfois ressentie comme plus naturelle et intuitive, mais qui est en général plus difficile à appliquer. Intuitivement, le forcing consiste à étendre l'univers V. Dans cet univers plus large, V*, on pourra par exemple avoir de nombreux nouveaux sous-ensembles de ω = {0,1,2,...} qui n'existaient pas dans l'univers V, violant ainsi l'hypothèse du continu. A priori impossible, cette construction ne fait que refléter l'un des « paradoxes » de Cantor concernant l'infini, et en particulier le fait qu'il existe des modèles dénombrables de ZFC, contenant pourtant des ensembles non dénombrables (au sens du modèle), d'après le théorème de Löwenheim-Skolem. En principe, on pourrait par exemple considérer , identifier avec , et introduire une relation d'appartenance étendue mettant en jeu les « nouveaux » ensembles de la forme . Le forcing est une version élaborée de cette idée, réduisant l'expansion à l'existence d'un nouvel ensemble, et permettant un contrôle fin des propriétés de l'univers ainsi étendu. La technique initialement définie par Cohen, connue à présent sous le nom de , est légèrement différente du forcing non ramifié qui sera exposé ici.

À propos de ce résultat
Cette page est générée automatiquement et peut contenir des informations qui ne sont pas correctes, complètes, à jour ou pertinentes par rapport à votre recherche. Il en va de même pour toutes les autres pages de ce site. Veillez à vérifier les informations auprès des sources officielles de l'EPFL.
Cours associés (1)
MATH-318: Set theory
Set Theory as a foundational system for mathematics. ZF, ZFC and ZF with atoms. Relative consistency of the Axiom of Choice, the Continuum Hypothesis, the reals as a countable union of countable sets,
Publications associées (12)
Concepts associés (21)
Théorie des ensembles de Zermelo-Fraenkel
vignette|L'appartenance En mathématiques, la théorie des ensembles de Zermelo-Fraenkel, abrégée en ZF, est une axiomatisation en logique du premier ordre de la théorie des ensembles telle qu'elle avait été développée dans le dernier quart du par Georg Cantor. L'axiomatisation a été élaborée au début du par plusieurs mathématiciens dont Ernst Zermelo et Abraham Fraenkel mais aussi Thoralf Skolem.
Inner model
In set theory, a branch of mathematical logic, an inner model for a theory T is a substructure of a model M of a set theory that is both a model for T and contains all the ordinals of M. Let be the language of set theory. Let S be a particular set theory, for example the ZFC axioms and let T (possibly the same as S) also be a theory in . If M is a model for S, and N is an -structure such that N is a substructure of M, i.e. the interpretation of in N is N is a model for T the domain of N is a transitive class of M N contains all ordinals of M then we say that N is an inner model of T (in M).
Univers (logique)
En mathématiques, et en particulier en théorie des ensembles et en logique mathématique, un univers est un ensemble (ou parfois une classe propre) ayant comme éléments tous les objets qu'on souhaite considérer dans un contexte donné. Structure (mathématiques) Dans de nombreuses utilisations élémentaires de la théorie des ensembles, on se place en réalité dans un ensemble général U (appelé parfois univers de référence), et les seuls ensembles considérés sont les éléments et les sous-ensembles de U ; c'est ce point de vue qui a amené Cantor à développer sa théorie en partant de U = R, l'ensemble des nombres réels.
Afficher plus

Graph Chatbot

Chattez avec Graph Search

Posez n’importe quelle question sur les cours, conférences, exercices, recherches, actualités, etc. de l’EPFL ou essayez les exemples de questions ci-dessous.

AVERTISSEMENT : Le chatbot Graph n'est pas programmé pour fournir des réponses explicites ou catégoriques à vos questions. Il transforme plutôt vos questions en demandes API qui sont distribuées aux différents services informatiques officiellement administrés par l'EPFL. Son but est uniquement de collecter et de recommander des références pertinentes à des contenus que vous pouvez explorer pour vous aider à répondre à vos questions.