Concept

Conformal map projection

Summary
In cartography, a conformal map projection is one in which every angle between two curves that cross each other on Earth (a sphere or an ellipsoid) is preserved in the image of the projection; that is, the projection is a conformal map in the mathematical sense. For example, if two roads cross each other at a 39° angle, their images on a map with a conformal projection cross at a 39° angle. A conformal projection can be defined as one that is locally conformal at every point on the map, albeit possibly with singular points where conformality fails. Thus, every small figure is nearly similar to its image on the map. The projection preserves the ratio of two lengths in the small domain. All of the projection's Tissot's indicatrices are circles. Conformal projections preserve only small figures. Large figures are distorted by even conformal projections. In a conformal projection, any small figure is similar to the image, but the ratio of similarity (scale) varies by location, which explains the distortion of the conformal projection. In a conformal projection, parallels and meridians cross rectangularly on the map. The converse is not necessarily true. The counterexamples are equirectangular and equal-area cylindrical projections (of normal aspects). These projections expand meridian-wise and parallel-wise by different ratios respectively. Thus, parallels and meridians cross rectangularly on the map, but these projections do not preserve other angles; i.e. these projections are not conformal. As proven by Leonhard Euler in 1775, a conformal map projection cannot be equal-area, nor can an equal-area map projection be conformal. This is also a consequence of Carl Gauss's 1827 Theorema Egregium [Remarkable Theorem]. Mercator projection (conformal cylindrical projection) Mercator projection of normal aspect (Every rhumb line is drawn as a straight line on the map.
About this result
This page is automatically generated and may contain information that is not correct, complete, up-to-date, or relevant to your search query. The same applies to every other page on this website. Please make sure to verify the information with EPFL's official sources.
Related courses (3)
MATH-213: Differential geometry
Ce cours est une introduction à la géométrie différentielle classique des courbes et des surfaces, principalement dans le plan et l'espace euclidien.
MATH-436: Homotopical algebra
This course will provide an introduction to model category theory, which is an abstract framework for generalizing homotopy theory beyond topological spaces and continuous maps. We will study numerous
MATH-126: Geometry for architects II
Ce cours traite des 3 sujets suivants : la perspective, la géométrie descriptive, et une initiation à la géométrie projective.
Related lectures (20)
Serre model structure on Top
Explores the Serre model structure on Top, focusing on right and left homotopy.
Developable Surfaces and Parametrization
Explores developable surfaces, parametrization, equations verification, and conformally flat surfaces.
Conformal Maps and Hyperbolic Geometry
Explores conformal maps, hyperbolic geometry, and isometric properties of disks.
Show more
Related publications (8)
Related concepts (2)
Tissot's indicatrix
In cartography, a Tissot's indicatrix (Tissot indicatrix, Tissot's ellipse, Tissot ellipse, ellipse of distortion) (plural: "Tissot's indicatrices") is a mathematical contrivance presented by French mathematician Nicolas Auguste Tissot in 1859 and 1871 in order to characterize local distortions due to map projection. It is the geometry that results from projecting a circle of infinitesimal radius from a curved geometric model, such as a globe, onto a map.
Mercator projection
The Mercator projection (mərˈkeɪtər) is a cylindrical map projection presented by Flemish geographer and cartographer Gerardus Mercator in 1569. It became the standard map projection for navigation because it is unique in representing north as up and south as down everywhere while preserving local directions and shapes. The map is thereby conformal. As a side effect, the Mercator projection inflates the size of objects away from the equator. This inflation is very small near the equator but accelerates with increasing latitude to become infinite at the poles.